Full-Text Search Specialty Data Store
User’s Guide

Full-Text Search SDS Version 12.x
Document ID: 36521-01-1200-02
Last Revised:October 15, 2000

Principal authors: Lori Johnson and Jim Cluett

Contributing authors: Martin Ash, Vic Mesenzeff, Bill Seiger

Document ID: 36521-01-1200

Document Orders

This publication pertains to Full-Text Search SDS Version 12.x of the Sybase
database management software and to any subsequent release until otherwise
indicated in new editions or technical notes. Information in this document is
subject to change without notice. The software described herein is furnished under
a license agreement, and it may be used or copied only in accordance with the
terms of that agreement.

To order additional documents, U.S. and Canadian customers should call
Customer Fulfillment at (800) 685-8225, fax (617) 229-9845.

Customers in other countries with a U.S. license agreement may contact Customer
Fulfillment via the above fax number. All other international customers should
contact their Sybase subsidiary or local distributor.

Upgrades are provided only at regularly scheduled software release dates.
Copyright © 1989-1998 by Sybase, Inc. All rights reserved.

No part of this publication may be reproduced, transmitted, or translated in any
form or by any means, electronic, mechanical, manual, optical, or otherwise,
without the prior written permission of Sybase, Inc.

Sybase Trademarks

Sybase, the Sybase logo, APT-FORMS, Certified SYBASE Professional, Column
Design, Data Workbench, First Impression, InfoMaker, ObjectCycle, PowerBuilder,
PowerDesigner, Powersoft, Replication Server, S-Designor, SQL Advantage, SQL
Debug, SQL SMART, Transact-SQL, Visual Components, VisualWriter, and VQL
are registered trademarks of Sybase, Inc. Adaptable Windowing Environment,
Adaptive Component Architecture, Adaptive Server, Adaptive Server Anywhere,
Adaptive Server Enterprise Monitor, Adaptive Server 1Q, Adaptive Warehouse,
ADA Workbench, AnswerBase, Application Manager, AppModeler, APT-Build,
APT-Edit, APT-Execute, APT-Library, APT-Translator, APT Workbench, Backup
Server, BayCam, Bit-Wise, ClearConnect, Client-Library, Client Services,
CodeBank, Connection Manager, DataArchitect, Database Analyzer, DataExpress,
Data Pipeline, DataWindow, DB-Library, dbQueue, Developers Workbench,
DirectConnect, Distribution Agent, Distribution Director, Embedded SQL, EMS,
Enterprise Client/Server, Enterprise Connect, Enterprise Manager, Enterprise SQL
Server Manager, Enterprise Work Architecture, Enterprise Work Designer,
Enterprise Work Modeler, EWA, Formula One, Gateway Manager, GeoPoint,
ImpactNow, InformationConnect, InstaHelp, InternetBuilder, iScript, Jaguar CTS,
jConnect for JDBC, KnowledgeBase, Logical Memory Manager,
MainframeConnect, Maintenance Express, MAP, MDI Access Server, MDI
Database Gateway, media.splash, MetaBridge, MetaWorks, MethodSet, Net-

Restricted Rights

Gateway, Netimpact, Net-Library, Next Generation Learning, ObjectConnect,
OmniConnect, OmniSQL Access Module, OmniSQL Toolkit, Open Client, Open
ClientConnect, Open Client/Server, Open Client/Server Interfaces, Open
Gateway, Open Server, Open ServerConnect, Open Solutions, Optima++, PB-Gen,
PC APT-Execute, PC DB-Net, PC Net Library, Power++, Power AMC, PowerBuilt,
PowerBuilt with PowerBuilder, Power Dynamo, Power J, PowerScript, PowerSite,
PowerSocket, Powersoft Portfolio, PowerStudio, Power Through Knowledge,
PowerWare Desktop, PowerWare Enterprise, ProcessAnalyst, QuickStart
DataMart, QuickStart MediaMart, QuickStart ReportSmart, Replication Agent,
Replication Driver, Replication Server Manager, Report-Execute, Report
Workbench, Resource Manager, RW-DisplayLib, RW-Library, SAFE, SDF, Secure
SQL Server, Secure SQL Toolset, Security Guardian, SKILS, smart.partners,
smart.parts, smart.script, SQL Code Checker, SQL Edit, SQL Edit/TPU, SQL
Modeler, SQL Remote, SQL Server, SQL Server/CFT, SQL Server/DBM, SQL
Server Manager, SQL Server SNMP SubAgent, SQL Station, SQL Toolset, Sybase
Central, Sybase Client/Server Interfaces, Sybase Development Framework,
Sybase Gateways, Sybase MPP, Sybase SQL Desktop, Sybase SQL Lifecycle, Sybase
SQL Workgroup, Sybase Synergy Program, Sybase Virtual Server Architecture,
Sybase User Workbench, SybaseWare, SyBooks, System 10, System 11, the System
Xl logo, SystemTools, Tabular Data Stream, The Enterprise Client/Server
Company, The Future is Wide Open, The Learning Connection, The Model for
Client/Server Solutions, The Online Information Center, Translation Toolkit,
Turning Imagination Into Reality, UNIBOM, Unilib, Uninull, Unisep, Unistring,
URK Runtime Kit for UniCode, Viewer, VisualSpeller, WarehouseArchitect,
Warehouse WORKS, Watcom, Watcom SQL, Watcom SQL Server, Web.PB,
Web.SQL, WebSights, WebViewer, WorkGroup SQL Server, XA-Library, XA-
Server, and XP Server are trademarks of Sybase, Inc. 1/98

Verity[] and TOPIC[are registered trademarks of Verity, Inc.

All other company and product names used herein may be trademarks or
registered trademarks of their respective companies.

Use, duplication, or disclosure by the government is subject to the restrictions set
forth in subparagraph (c)(1)(ii) of DFARS 52.227-7013 for the DOD and as set forth
in FAR 52.227-19(a)-(d) for civilian agencies.

Sybase, Inc., 6475 Christie Avenue, Emeryville, CA 94608.

Table of Contents

About This Book
AUTIENCE. L o oot XVii
Howto Use ThISBOOKot e xvii
Adaptive Server Enterprise DOCUMENtS.ottt xviii
Other Sources of Information i, XiX
CONVENTIONS . . . e e e e XX
Directory Paths XX
Formatting SQL Statementsc i XX
SQL Syntax ConveNntionsS.ttt e XX
CaSE o it XXii
Obligatory Options {You Must Choose At LeastOne}........... XXii
Optional Options [You Don’t Have to Choose Any]............. XXii
Ellipsis: Do It Again (and Again)... ..., XXii
FYOuNeed Help XXiii

1. Introduction

What Is the Full-Text Search Specialty Data Store? 1-1
Capabilities of the Full-Text SearchEngineo, 1-1
Capabilities of the Enhanced Full-Text Search Engine. 1-2

2. Understanding the Full-Text Search Engine

3. Installation

Components of the Full-Text SearchEngine 2-1
TheSource Table. 2-1
The Verity Collections e 2-1
FIErS oo 2-2
Thetext doDatabasecoi i i 2-2
Thevesaux Table 2-3
Thevesauxcol Table. i 2-3
ThelndexTable 2-3
Thetext eventsTable. ... e 2-4
Relationships Between the Components. 2-5
Howa Full-Text Search Works 2-5

Installing Enhanced Full-Text Search on Windows NT 3-1

Full-Text Search Specialty Data Store User's Guide v

Full-Text Search SDS Version 12.x

Configure Enhanced Full-Text Search for Windows NT.............. 3-3
Set the SYBASE Environment Variable......................... 3-3

Set the SYBASE_FTS Environment Variable 3-3
Add the Full-Text Search engine to the PATH environment variable 3-3
Add entries to the interfaces file (sgl.ini). 3-3
Start the Full-Text Search Engine. 3-5
Configure ASE forthe TextServer ..., 3-5
Installing Enhanced Full-Text Searchon UNIX. i ian.. 3-5
Thesrvbuild Utility ... 3-7
Starting the Full-Text Search Engine 3-9
Configure ASE for Full-TextSearchooin.. 3-9

4, Configuring Adaptive Server for Full-Text Searches

Configuring Adaptive Server for a Full-Text SearchEngine 4-1
Enabling Configuration Parameterscoovvviunn.. 4-1
Running the installtextserver Script. o ... 4-2

Editing the installtextserver Script 4-2
Running the installtextserver Script 4-3
Running the installmessages Script 4-4
Running the installevent Script 4-4
Editing the installevent Script o 4-5
Running the installevent Script. o i 4-5
Name thelocal server. ... 4-5

Creating and Maintaining the TextIndexes, 4-6

Setting Up Source Tables for Indexing. 4-6
Adding an IDENTITY ColumntoaSource Table................ 4-6
Adding a Unique Index to an IDENTITY Column............... 4-7

Creating the Text Indexand Index Table. 4-7
Specifying Multiple Columns When Creating a Text Index 4-9

Bringing the Database Online for Full-Text Searches 4-9

Propagating Changestothe TextIndex. 4-10

Replicating Text INdexest 4-10

Example: Enabling a New Database for Text Searches 4-11
Step 1. Verify that the text_events Table Exists 4-11
Step 2. Check for an IDENTITY Column 4-12
Step 3. Create a Unique Index on the IDENTITY Column. 4-12
Step 4. Create the Text Indexand Index Table 4-12
Step 5. Bring the Database Online for a Full-Text Search......... 4-13

vi Table of Contents

Full-Text Search SDS Version 12.x

5. Setting Up Verity Functions

Enabling Query-By-Example, Summarization, and Clustering 5-1
Editing the Master style.prmFile., 5-2
Editing Individual style.prmFiles. L. 5-3

Setting Up a Column to Use As a Sort Specification 5-4

Using Filters on Text That ContainS Tags.« oo vt e 5-6

Creating a Custom Thesaurus (Enhanced VersionOnly) 5-8
Examining the Default Thesaurus (Optional) 5-9
Creatingthe Control File.......... i, 5-9

Control FileSyntax. 5-10
Creatingthe Thesaurusco i, 5-10
Replacing the Default Thesaurus with the Custom Thesaurus. 5-11

Creating Topics (Enhanced VersionOnly) 5-12
Creatingan Outline File. i i 5-13
Creatinga Topic SetDirectory ..., 5-14
Creatinga KnowledgeBaseMap, 5-14
Defining the Location of the KnowledgeBase Map 5-15
Executing Queries Against Defined Topics. 5-15
Troubleshooting TOPICSot e 5-16

6. Writing Full-Text Search Queries

Components of a Full-Text SearchQuery 6-1
Default Behaviour. 6-1
Pseudo ColumnsinthelndexTable. i, 6-2
Using the score Column to Relevance-Rank Search Results 6-3
Using the sort_by Column to Specify aSortOrder................... 6-4
Using the summary Column to Summarize Documents 6-6
Using Pseudo Columns to Request Clustered ResultSets 6-6
PreparingtoUse Clustering.............. 6-7
Writing Queries Requesting a Clustered ResultSet 6-7
Full-Text Search Operatorsttt 6-8
Considerations When Using Verity Operators. 6-9
Using the Verity Operatorst 6-11
T 6-11

AN, OF . e 6-11
COMPIEMENT. . . o 6-12
P 6-12

e, o 6-13

[LTe T o T<T: U o 6-14

0] 6-14

Full-Text Search Specialty Data Store User's Guide vii

Full-Text Search SDS Version 12.x

PRFASE .« e 6-14
paragraph 6-14
ProduCE . . oo 6-15
]] (1o 6-15
] (-1 6-15
T 0 6-16
thesaurus. 6-16
topic (Enhanced VersionOnly)o ... 6-17
wildcard 6-17
WOID 6-19
YBSNI0 L t 6-19
Operator Modifiers o 6-19

7. System Administration

Starting the Full-Text Search Engineon UNIX 7-1
Creatingthe RunserverFile. i i, 7-1
Starting the Full-Text Search Engine on Windows NT 7-3
Starting the Full-Text Search Engine AsaService 7-3
Shutting Down the Full-Text Search Engine.oov i, 7-4
Modifying the Configuration Parameters. i .. 7-5
Modifying Values in the Standard Version......................... 7-7
Modifying Values in the Enhanced Version 7-8
Available Configuration Paramters................coiiiiiein.n. 7-8
Setting the Default Languageco ... 7-10
Setting the Default Character Set. 7-11
Setting the Default SortOrder 7-11
Setting Trace Flagst e 7-12
Setting Open Server Trace Flags. 7-14
Setting Case Sensitivity 7-15
Backup and Recovery for the Standard Full-Text Search Engine 7-15
Backing Up Verity Collections 7-16
Restoring Verity Collections and Text Indexes from Backup 7-17
Backup and Recovery for the Enhanced Full-Text Search Engine 7-18
Customizable Backupand Restore., 7-19
Backing Up Verity Collections 7-19
Restoring Collections and Text Indexes from Backup............... 7-20

8. Performance and Tuning
Updating Existing INndexes.ot 8-1

Viii Table of Contents

Full-Text Search SDS Version 12.x

Increasing Query Performancec.uueeinn e 8-2
Limiting the Numberof Rows 8-2
Ensuring the Correct Join Order for Queries 8-2

Reconfiguring Adaptive Server e 8-3
CIS CUISOE FOWS. .« v vt et ettt e e e e e e e e e e e 8-3
CIS PACKEL SIZE. . . oot e 8-3

Reconfiguring the Full-Text SearchEngine i, 8-4
batch_Size 8-4
MIN_sessions and Max_SeSSIONSo vttt 8-4

Using sp_text notify 8-5

Configuring Multiple Full-Text Search Enginest 8-5
Creating Multiple Full-Text Search Engines at Start-Up.............. 8-5
Adding Full-Text SearchEngines., 8-6
Configuring Additional Full-Text Search Engines. 8-6

MUIIPIE USEIS . o oot e e 8-7

9. Verity Topics

What are TOPICS?. . o vttt e 9-1
Topic Organization. 9-1
Weight ASSIgNMENTS. . ..o 9-1

UsingaTopicOutline File e 9-2

Making Topics Available 9-2
SEUP PrOCESS. . o vttt 9-2

Knowledge Bases of TOPICSo oo 9-3
Combining Topics into a KnowledgeBase 9-3

Structure of TOPICS .« . . oot 9-4
Top-Level TOPICS. . .ot 9-5
SUDTOPICS . . oo 9-5
Evidence TOPICS. . ..o ot 9-6
Topic and Subtopic Relationships 9-6

Maximum Number of TOpICS 9-7
Topic Naming ISSUESottt e 9-7

TopicNameLength 9-7
Case SENSItIVILY 9-7

Verity QUery Languageot 9-7

Query Language SUMMANYottt 9-8
Evidence Operatorst 9-8
Proximity Operatorst 9-9
Relational Operators e 9-10
CoNCePt OPEratorS. . . oottt e 9-11

Full-Text Search Specialty Data Store User's Guide iX

Full-Text Search SDS Version 12.x

Boolean Operatorscovuii i 9-11
Modifiers. 9-12
Operator Precedence Rules. 9-12
Sample Topic OULINES.o 9-13
Operator ReferenCe.o 9-14
ACCRUE Operator.t e 9-14
ALL OPEratorot 9-15
AND Operatoro 9-15
ANY Operator.o 9-15
CONTAINS Operator.ot 9-15
ENDS Operator.ot 9-16
= (EQUALLS) Operatorottt e e e 9-16
FILTER Operator.o e 9-16
> (GREATER THAN) Operatorcouuiiiiiiiinaannnnn.. 9-16
>= (GREATER THAN OR EQUAL TO) Operator.................. 9-17
<(LESSTHAN) Operatorooii e 9-17
<= (LESS THAN OREQUAL TO) Operator...............cc.vu... 9-17
IN OPBrator . . .o 9-17
MATCHES Operatorot 9-18
NEAR Operator e 9-18
NEAR/N OpPErator.ottt 9-19
OR OPErator . ..ottt 9-19
PARAGRAPH Operatoro 9-19
PHRASE Operator e 9-19
SENTENCE Operator.t 9-20
SOUNDEX OpPeratorooitt i 9-20
STARTS OPEratorttt e e 9-20
STEM Operator.ot e 9-20
SUBSTRING Operator. ...t 9-21
THESAURUS Operatoroot i 9-21
WILDCARD Operatorot e 9-21
Using Wildcard Special Characters ooi... 9-21
Searching for Non-alphanumeric Characters...................... 9-22
Searching for Wildcard Characters as Literals.................. 9-22
Searching for Special Characters as Literals. 9-23
WORD Operator.ot 9-23
Modifier Reference 9-24
CASE Modifier 9-24
MANY Modifier 9-24
NOT Modifier e 9-25
ORDER Modifier. 9-25

Table of Contents

Full-Text Search SDS Version 12.x

Weights and Document Importance.oouin e 9-25
TopicWeights 9-25
Which Operators Accept Weights 9-26
How Weights Affect Importancet 9-27
Assigning Weights 9-28
Automatic Weight Assignments. 9-30
Tips for AssigningWeights. i 9-30
Changing Weights 9-30

Topic Scoring and Document Importancec.cooveeiiiinneennnn .. 9-31

DeSIgNING TOPICS. « .« v ottt et e e 9-34

Preparing Your TOpiC DESIgN oo v 9-34
Understanding Your InformationNeeds 9-34
Understanding Your Documents, 9-35
UsingScanned Data. 9-36
Categorizing Document Samples., 9-36

TopiC DeSIgN Strategies.o oottt 9-36
TOp-DOWN DESIGN. . o oo 9-37
Bottom-Up DeSIgNo oot 9-37

Designing the Initial TOpIC.ot 9-38
Outhining aTOPIC .. .ot 9-38
Top-Down Topic Outline Example.t 9-39

Step One: Establishing an Information Hierarchy 9-39
Step Two: Establishing Individual Search Categories. 9-40
Step Three: Establishing the Topicsto be Built 9-40
Bottom-Up Topic OutlineExample 9-43
Step One: Identifying Low-level Topics 9-44
Step Two: Categorizing Related Subtopics. 9-45
Step Three: Establishing Top-Level Topics..................... 9-46

A. System Procedures

SP_Check _texXt iNdeXo A-2
Sp_Clean_texXt_eVENtS.ot A-4
Sp_clean_text iNdeXesttt A-5
Sp_create teXt iNAEXot A-6
SP_Arop_teXt iNAeXottt A-9
Sp_help_text iNdex A-11
sp_optimize_text iNdeX.iiiii A-12
Sp_redo_text BVENTS. ot A-14
sp_refresh_text_indexo A-16
sp_show_text online A-18

Full-Text Search Specialty Data Store User's Guide Xi

Full-Text Search SDS Version 12.x

SP_teXt_CIUSTEr. . .o o A-20
Sp_text_configure. A-23
Sp_text_dump_database. A-25
sp_text_Kill. ... A-28
sp_text_load_index A-30
SP_teXt_NOtify A-32
SP_teXt_ONliNeo A-33
B. Sample Files
Default textsvr.cfg Configuration File o i B-1
The sample_text_main.sql Script. B-4
Sample Files lllustrating Full-Text Search Engine Features B-5
CUuStOM THESAUIUS e e B-5
TOPICS v vttt e B-5
Clustering, Summarization, and Query-by-Example B-6
getsend Sample Program B-6
C. Unicode Support
Index
Xii Table of Contents

List of Figures

Figure 2-1: Components of the Full-Text Search engingc.ccccvveveiiiieiicceeeeee e 2-5
Figure 2-2: Processing a full-text search query

Full-Text Search Specialty Data Store User's Guide Xiii

Full-Text Search SDS Version 12.x

Xiv List of Figures

List of Tables

Table 1: Syntax statement CONVENTIONScvciieiiiieiie e
Table 2-1: Columns in the VESAUX taDIEc.ciiiiiiiccce s
Table 2-2: Columns in the VeSAUXCO! tabIe ..o
Table 2-3: Columns in the text_events table ...
Table 3-1: Default attributes in dSedit.............cocoviiiiiiiiee
Table 6-1: Full-Text Search engine pseudo columns

Table 6-2: Values for the sort_by pseudo COIUMN ...
Table 6-3: VEritY SEArCH OPEIATOIS ..ottt
Table 6-4: AIErNAtive VEIITY SYNTAX....cciiiiieiiiisieesie ettt
Table 6-5: Full-Text Search engine wildcard characters ..o,
Table 6-6: Verity operator MOITIEIS ..o
Table 7-1: Definition of flags in the runserver file...........cccooiiiiinc e
Table 7-2: Path environment variable for the runserver file..............ccvviiiiiiicccnes
Table 7-3: Configuration PAramMeterS ...t s
Table 7-4: Configuration parameters for Enhanced version only

Table 7-5: Limits to Configuration Parameterscocoeeorriirnienenseesee e
Table 7-6: vdkLanguage configuration ParametersS.........cccccuveieieneieieneiesesieiese e seens
Table 7-7: VETItY CHATACTET SETS......cuiiieeeieiciee et
Table 7-8: Sort order values for the configuration file...........c.cccoiiiiii i
Table 7-9: Full-Text Search engine trace flags ..o
Table 7-10: Open SErver trace flags ...
Table 9-1: EVIAENCE OPEIALOIS ..c.veiiiiiieii ittt ettt ettt e sbene e

Table 9-2: Proximity Operators
Table 9-3: Relational Operators

Table 9-4: [OF0] g [ol=T o1 A @] o L=T - (o] TSROSO
Table 9-5: BOOIEAN OPEIALOISovieiiiiieieit ettt et
Table 9-6: 1Y [0 To L1 11T USSR
Table 9-7: PreCEABNCE FUIES ...ttt
Table 9-8: Wildcard Special CharaCters ...
Table 9-9: EVidence TOPICS AN SCOTES........cciiriririiricieiresie ettt
Table A-1: SYSEEIM PIOCEAUIES. ...ttt sttt te ettt be et bese e e sbe e esesbe e eresaeneas
Table A-2: Clustering configuration Parameters..........cooveivieenneiinsee e

Table A-3: Values for backupdbs

Full-Text Search Specialty Data Store User's Guide XV

Full-Text Search SDS Version 12.x

XVi List of Tables

About This Book

This book explains how to use the Full-Text Search Specialty Data
Store product with Sybase] Adaptive Serverd Enterprise. Although
this book refers to Adaptive Server throughout, the instructions for
using it with OmniConnect™ are the same.

There are two versions of the Full-Text Search Specialty Data Store:

« The Standard version is included with your purchase of Adaptive
Server Enterprise

= TheEnhanced version is purchased separately and has additional
capabilities

This book describes the features and functionality of both versions.

Audience
This book is for System Administrators who are configuring
Adaptive Server for a Full-Text Search Specialty Data Store and for
users who are performing full-text searches on Adaptive Server data.
How to Use This Book

This book includes the following chapters:

< Chapter 1, “Introduction,” provides an overview of Full-Text
Search Specialty Data Store.

= Chapter 2, “Understanding the Full-Text Search Engine,”
describes the components of the Full-Text Search Specialty Data
Store and how it works.

« Chapter 3, “Installation,” provides step-by-step installation
instructions.

= Chapter 4, “Configuring Adaptive Server for Full-Text Searches,”
describes how to configure Adaptive Server so that Full-Text
Search Specialty Data Store can perform full-text searches on the
Adaptive Server databases.

= Chapter5, “Setting Up Verity Functions,” describes the setup you
need to do before issuing full-text search queries.

= Chapter 6, “Writing Full-Text Search Queries,” describes the
components you use to write full-text search queries.

Full-Text Search Specialty Data Store User's Guide XVii

Adaptive Server Enterprise Documents

Full-Text Search SDS Version 12.x

Chapter 7, “System Administration,” provides information about
system administration issues.

Chapter 8, “Performance and Tuning,” provides information
about performance and tuning issues.

Chapter 9, “Verity Topics,” provides information about
configuring the Verity engine.

Appendix A, “System Procedures,” describes Full-Text Search
Specialty Data Store system procedures.

Appendix B, “Sample Files,” contains the text of the textsvr.cfg
file, describes the sample files included with Full-Text Search
Specialty Data Store, and discusses issues regarding the
sample_text_main.sgl script.

Appendix C, “Unicode Support,” describes how to configure
Full-Text Search Specialty Data Store to use Unicode.

Adaptive Server Enterprise Documents

Xviii

The following documents comprise the Sybase Adaptive Server
Enterprise documentation:

The Installation and Release Bulletin for your platform — contains
instructions on how to installthe Enhanced Full-Text Search
Specialty Data Store, how to configure a Full-Text Search engine,
and last-minute information that was too late to be included in
the books.

A more recent version of the Installation and Release Bulletin may
be available on the World Wide Web. To check for critical
product or document information that was added after the
release of the product CD, use Sybase Technical Library on the
Web.

The Adaptive Server installation documentation for your
platform — describes installation and upgrade procedures for all
Adaptive Server and related Sybase products.

The Adaptive Server configuration documentation for your
platform — describes configuring a server, creating network
connections, configuring for optional functionality, such as
auditing, installing most optional system databases, and
performing operating system administration tasks.

Transact-SQL User’s Guide — documents Transact-SQL, Sybase’s
enhanced version of the relational database language. This

About This Book

Full-Text Search SDS Version 12.x Adaptive Server Enterprise Documents

manual serves as a textbook for beginning users of the database
management system. This manual also contains descriptions of
the pubs2 and pubs3 sample databases.

System Administration Guide — provides in-depth information
aboutadministering servers and databases. This manual includes
instructions and guidelines for managing physical resources and
user and system databases, and specifying character conversion,
international language, and sort order settings.

Adaptive Server Reference Manual — contains detailed information
about all Transact-SQL commands, functions, procedures, and
datatypes. This manual also contains a list of the Transact-SQL
reserved words and definitions of system tables.

Performance and Tuning Guide — explains how to tune Adaptive
Server for maximum performance. This manual includes
information about database design issues that affect
performance, query optimization, how to tune Adaptive Server
for very large databases, disk and cache issues, and the effects of
locking and cursors on performance.

The Utility Programs manual for your platform — documents the
Adaptive Server utility programs, such as isgl and bcp, which are
executed at the operating system level.

Error Messages and Troubleshooting Guide —explains how to resolve
frequently occurring error messages and describes solutions to
system problems frequently encountered by users.

Component Integration Services User’s Guide for Adaptive Server
Enterprise and OmniConnect — explains how to use the Adaptive
Server Component Integration Services feature to connect remote
Sybase and non-Sybase databases.

Adaptive Server Glossary — defines technical terms used in the
Adaptive Server documentation.

Other Sources of Information

Use the Sybase Technical Library CD and the Technical Library Web
site to learn more about your product:

Technical Library CD contains product manuals and technical
documents and is included with your software. The DynaText
browser (included on the Technical Library CD) allows you to
access technical information about your product in an easy-to-
use format.

Full-Text Search Specialty Data Store User's Guide XiX

Conventions

Full-Text Search SDS Version 12.x

Conventions

Refer to the Technical Library Installation Guide in your
documentation package for instructions on installing and
starting Technical Library.

= Technical Library Web site is an HTML version of the Technical
Library CD that you can access using a standard Web browser.

To use the Technical Library Web site, go to www.sybase.com
and choose Documentation, choose Technical Library, then
choose Product Manuals.

XX

Directory Paths

For readability, directory paths in this manual are in UNIX format.
On Windows NT, substitute $SYBASE with %SYBASE% and replace
slashes (/) with backslashes (\). For example, replace this user input:

$SYBASE/ $SYBASE_FTS/ scri pts
with:
YSYBASEW “SYBASE _FTS% scripts

Formatting SQL Statements

SQL is a free-form language: there are no rules about the number of
words you can put on a line or where you must break a line.
However, for readability, all examples and syntax statements in this
manual are formatted so that each clause of a statement begins on a
new line. Clauses that have more than one part extend to additional
lines, which are indented.

SQL Syntax Conventions

The conventions for syntax statements in this manual are as follows:

Table 1: Syntax statement conventions

Key Definition

command Command names, command option names, utility names,
utility flags, and other keywords are in bol d Couri er in
syntax statements and in bold Helvetica in paragraph text.

About This Book

Full-Text Search SDS Version 12.x

Conventions

Table 1: Syntax statement conventions (continued)

Key

Definition

variable

Variables, or words that stand for values that you fill in, are in
italics.

Curly braces indicate that you choose at least one of the
enclosed options. Do not include braces in your option.

Brackets mean choosing one or more of the enclosed options is
optional. Do not include brackets in your option.

Parentheses are to be typed as part of the command.

The vertical bar means you may select only one of the options
shown.

The comma means you may choose as many of the options
shown as you like, separating your choices with commas to be
typed as part of the command.

= Syntax statements (displaying the syntax and all options for a

command) are printed like this:

sp_dropdevi ce [devi ce_nane]

or, for a command with more options:

sel ect col um_nane
fromtabl e_nane
where search_conditions

In syntax statements, keywords (commands) are in normal font
and identifiers are in lowercase: normal font for keywords,
italics for user-supplied words.

= Examples showing the use of Transact-SQL commands are

printed

sel ect

like this:

* from publishers

= Examples of output from the computer are printed like this:

pub_nane city state
New Age Books Bost on VA
Bi nnet & Hardl ey Washi ngton DC
Al godat a | nf osyst ens Ber kel ey CA

(3 rows affected)

Full-Text Search Specialty Data Store User's Guide

XXi

Conventions

Full-Text Search SDS Version 12.x

XXii

Case

In this manual, most of the examples are in lowercase. However, you
can disregard case when typing Transact-SQL keywords. For
example, SELECT, Select, and select are the same.

Adaptive Server’s sensitivity to the case of database objects, such as
table names, depends on the sort order installed on Adaptive Server.
You can change case sensitivity for single-byte character sets by
reconfiguring the Adaptive Server sort order. See “Changing the
Default Character Set, Sort Order, or Language” in Chapter 19 of the
System Administration Guide for more information.

Obligatory Options {You Must Choose At Least One}

= CurlyBraces and Vertical Bars: Choose one and only one option.

{di e_on_your _feet | live_on_your_knees |
live_on_your_feet}

« Curly Braces and Commas: Choose one or more options. If you
choose more than one, separate your choices with commas.

{cash, check, credit}

Optional Options [You Don’t Have to Choose Any]

= One Item in Square Brackets: You don’t have to choose it.
[anchovi es]

= Square Brackets and Vertical Bars: Choose none or only one.
[beans | rice | sweet_potatoes]

e« Square Brackets and Commas: Choose none, one, or more than
one option. If you choose more than one, separate your choices
with commas.

[extra_cheese, avocados, sour_creani

Ellipsis: Do It Again (and Again)...

An ellipsis (...) means that you can repeat the last unit as many times
as you like. In this syntax statement, buy is a required keyword:

buy thing = price [cash | check | credit]
[, thing = price [cash | check | credit]]...

You must buy at least one thing and give its price. You may choose a
method of payment: one of the items enclosed in square brackets.

About This Book

Full-Text Search SDS Version 12.x If You Need Help

You may also choose to buy additional things: as many of them as
you like. For each thing you buy, give its name, its price, and
(optionally) a method of payment.

If You Need Help

Each Sybase installation that has purchased a support contract has
one or more designated people who are authorized to contact Sybase
Technical Support. If you cannot resolve a problem using the
manuals or online help, please have the designated person contact
Sybase Technical Support or the Sybase subsidiary in your area.

Full-Text Search Specialty Data Store User's Guide XXiii

If You Need Help Full-Text Search SDS Version 12.x

XXiv About This Book

Introduction

What Is the Full-Text Search Specialty Data Store?

Full-Text Search Specialty Data Store (referred to in this book as the
Full-Text Search engine) is an Open Server(application built on
Verity[technology available in the Verity Developer’s Kit. Adaptive
Server connects to the Full-Text Search engine through Component
Integration Services (CIS), allowing queries written in the Verity
query language to perform full-text searches on Adaptive Server
data.

There are two versions of the Full-Text Search Specialty Data Store:

« The Standard version is included with your purchase of Adaptive
Server Enterprise

= TheEnhanced version is purchased separately and has additional
capabilities

This book describes the features and functionality of both versions.

Capabilities of the Full-Text Search Engine

The Full-Text Search Specialty Data Store product performs
powerful, full-text searches on Adaptive Server data. In Adaptive
Server, without the Full-Text Search engine, you can search text
columns only for data that matches what you specify in a select
statement. For example, if a table contains documents about dog
breeds, and you perform a search on the words “Saint Bernard,” the
query produces only the rows that include “Saint Bernard” in the
text column.

With the Full-Text Search engine, you can expand queries on text
columns to do the following:

= Rankthe results by order of how often a searched item appearsin
the selected document. For example, you can obtain a list of
document titles that reference the words “Saint Bernard” five or
more times.

= Select documents in which the words you search for appear
within n number of words of each other. For example, you can
search only for the documents that include the words “Saint
Bernard” and “Swiss Alps” and that appear within 10 words of
each other.

Full-Text Search Specialty Data Store User's Guide 11

Capabilities of the Enhanced Full-Text Search Engine

Full-Text Search SDS Version 12.x

Select documents that include all the search elements you specify
within a single paragraph or sentence. For example, you can
guery the documents that include the words “Saint Bernard” in
the same paragraph or sentence as the words “Swiss Alps.”

Select documents that contain one or more synonyms of the word
you specify. For example, you can select documents that discuss
“dogs,” and it returns documents that contain the words “dogs,”
“canine,” “pooch,” “pup,” and so on.

Capabilities of the Enhanced Full-Text Search Engine

1-2

In addition to the Full-Text Search engine capabilities described
above, the Enhanced Full-Text Search engine provides additional
functionality that allows you to refine your search. Using Enhanced
Full-Text Search engine, you can:

Create your own custom thesaurus. For example, you can create
a custom thesaurus that includes “working dogs,” “St. Bernard,”
“large dogs,” and “European Breeds” as synonyms for “Saint
Bernard.”

Create topics that specify the search criteria for a query. For
example, you can create a topic that returns documents that
include the phrase “Saint Bernard” or “St. Bernard,” followed by
documents that include the phrase “working dogs,” “large
dogs,” or “European Breeds.”

Return documents grouped in clusters to give you a sense of the
major topics covered in the documents.

Select a section of relevant text in a document and search for
other, similar documents.

Index many different document types, such as Microsoft Word,
and FrameMaker. The Standard Full-Text Search engine allows
you to index only SGML and HTML documents.

Sort documents using up to 16 sort orders. The Standard Full-Text
Search engine allows only a single sort order.

Enhanced Full-Text Search engine also provides additional system
administration features such as:

Integrated backup and restore capabilities

Ability to change the value of a configuration parameter using a
system procedure

Introduction

Full-Text Search SDS Version 12.x Capabilities of the Enhanced Full-Text Search Engine

Ability to optimize indexes for text searches when your server is
inactive, to enhance performance

Additional system management reports for viewing setup
information

Ability to bring databases online automatically for text searches

Full-Text Search Specialty Data Store User's Guide 1-3

Capabilities of the Enhanced Full-Text Search Engine

Full-Text Search SDS Version 12.x

1-4 Introduction

Understanding the Full-Text Search
Engine

This chapter describes how a Full-Text Search engine works. Topics
include:

= Components of the Full-Text Search Engine 2-1
= How a Full-Text Search Works 2-5

Components of the Full-Text Search Engine

The Full-Text Search engine uses the following components to
provide full-text search capabilities:

= Source table

= \erity collections (text index)

= Filters for a variety of document types
= text_db database

< Index table

= text_events table

The Source Table

The source table is a user table maintained by Adaptive Server. It
contains one or more columns using the text, image, char, varchar,
datetime, or small datetime datatype, which holds the data to be
searched. With the Enhanced Full-Text Search engine, the source
table can also have int, smallint, and tinyint columns, which holds the
data to be searched. The source table must have an IDENTITY
column, which is used to join the source table with the id column of
an index table during text searches.

The source table can be a local table, which holds the actual data, or
it can be a proxy table that is mapped to remote data using CIS.

The Verity Collections

The Full-Text Search engine uses the Verity collections, which are
located in $SYBASE/$SYBASE_FTS/collections. When you create the
text indexes, as described in “Creating the Text Index and Index
Table” on page 4-7, Verity creates a collection, which is a directory

Full-Text Search Specialty Data Store User's Guide 2-1

Components of the Full-Text Search Engine Full-Text Search SDS Version 12.x

that implements a text index. This collection is queried by the Full-
Text Search engine. For more information about Verity collections,
see the Verity Web site:

http://www.verity.com

Filters

The text index uses a filter to strip out the tags in a document that is
not ASCII text. The Standard Full-Text Search engine provides
filtering for SGML and HTML documents. The Enhanced Full-Text
Search engine provides additional filters for a variety of document
types (Microsoft Word, FrameMaker, WordPerfect, SGML, and
HTML).

The text_db Database

During the installation of the Full-Text Search engine, a database
named text_db is added to Adaptive Server using the installation
script installtextserver, as described in “Running the installtextserver
Script” on page 4-2. The database does not contain any user data, but
contains two support tables: vesaux and vesauxcol. These tables
contain the metadata used by the Full-Text Search engine to maintain
integrity between the Adaptive Server source tables and the Verity
collections.

When updating the collections after an insert, update, or delete is made
to an indexed column, the Full-Text Search engine queries the vesaux
and vesauxcol tables. These tables determine which collections
contain the modified columns so that all affected collections are
updated. The Full-Text Search engine also uses these tables when it is
brought online, to make sure that all necessary collections exist.

2-2 Understanding the Full-Text Search Engine

Full-Text Search SDS Version 12.x

Components of the Full-Text Search Engine

The vesaux Table

The columns in the vesaux table are described in Table 2-1.

Table 2-1: Columns in the vesaux table

Column Name

Description

id

IDENTITY column

object_name

Name of the source table on which the external index
is being created

option_string

Text index creation options

collection_id

Name of the Verity collection

key_column

Name of the IDENTITY column in the source table

svrid

Server ID of the Full-Text Search engine maintaining
the collection

The vesauxcol Table

The columns in the vesauxcol table are described in Table 2-2.

Table 2-2: Columns in the vesauxcol table

Column Name

Description

id

ID of the referenced row in the vesaux table

col_name

Name of the column for which you are searching

col_type

Column type (text, image, char, varchar, datetime,
smalldatetime; with the Enhanced Full-Text Search
engine, also int, smallint, and tinyint)

The Index Table

The index table provides a means of locating and searching
documents stored in the source table. The index table is maintained
by the Full-Text Search engine and has an id column that maps to the
IDENTITY column of the corresponding source table. The
IDENTITY value from the row in the source table is stored with the
data in the Verity collections, which allows the source and index
tables to be joined. Although the index table is stored and
maintained by the Full-Text Search engine, it functions as a proxy

Full-Text Search Specialty Data Store User's Guide 2-3

Components of the Full-Text Search Engine Full-Text Search SDS Version 12.x

table to Adaptive Server through the Component Integration
Services feature.

The index table contains special columns, called pseudo columns,
that are used by the Full-Text Search engine to determine the
parameters of the search and the location of the text data in the
source table. Pseudo columns have no associated physical storage—
the values of a pseudo column are valid only for the duration of the
query and are removed immediately after the query finishes
running.

For example, when you use the score pseudo column in a query, to
rank each document according to how well the document matches
the query, you may have to use a score of 15 to find references to the
phrase “small Saint Bernards” in the text database. This phrase does
not occur very often, and a low score value broadens the search to
include documents that have a small number of occurrences of the
search criteria. However, if you are searching for a phrase that is
common, like “large Saint Bernards,” you could use a score of 90,
which would limit the search to those documents that have many
occurrences of the search criteria.

You use the score column and the other pseudo columns, id,
index_any, sort_by, summary, and max_docs, to specify the parameters
to include in your search. For a description of the pseudo columns,
see “Pseudo Columns in the Index Table” on page 6-2.

The text_events Table

Each database containing tables for which there is a text index must
contain an events table, which logs inserts, updates, and deletes to
indexed columns. The name of this table is text_events. It is used to
propagate updated data to the Verity collections.

The columns in the text_events table are described in Table 2-3.

Table 2-3: Columns in the text_events table

Column Name Description

event_id IDENTITY column.
id ID of the row that was updated, inserted, or deleted.
tableid Name of the table that contains the row that was

updated, inserted, or deleted.

2-4 Understanding the Full-Text Search Engine

Full-Text Search SDS Version 12.x

Components of the Full-Text Search Engine

Table 2-3: Columns in the text_events table (continued)

Column Name

Description

columnid

Name of the column that the text index was created
on.

event_date

Date and time of the update, insert, or delete.

event_type

Type of update (update, insert, or delete).

event_status

Indicates whether the update, insert, or delete has
been propagated to the collections. Event Unread = 0.
Event Read = 1. Event Succeeded = 2. Event Failed =
3.

srvid

Server ID of the Full-Text Search engine maintaining
the collection.

Relationships Between the Components

The relationships between the Full-Text Search engine components
are shown in Figure 2-1.

Full-Text Search Specialty Data Store User's Guide 2-5

How a Full-Text Search Works Full-Text Search SDS Version 12.x

text_db database for Full-Text Search Full-Text Search eni
engine metadata ull-Text Search engine

vesauxcol i vesaux \

\ The Full-Text Search engine
\ connects to Adaptive
\ Server through an Open
\ Client connection.
\
T = - \
Source table = Adaptive Server
contains the actual B connects to Full-Text
text column - = Search engine
through CIS Y
/ .
(Source | [index , collections
d i i /
I /
] /
text_events table Text events 4
logs changes to
indexed ~——f—m ———
columns U Verity collections. CIS

maps Verity collections
Adaptive Server user database(s) containing to the Adaptive Server
the text tables (for example, pubs2) index table

Figure 2-1: Components of the Full-Text Search engine

How a Full-Text Search Works

To perform a full-text search, you enter a select statement that joins
the IDENTITY column from the source table with the id column of
the index table, using pseudo columns as needed to define the
search. For example, the following query searches for documents in
the blurbs table of the pubs2 database in which the word “Greek”
appears near the word “Gustibus” (the i_blurbs table is the index
table):

select tl1.score, t2.copy

fromi_blurbs t1, blurbs t2

where tl.id=t2.id and t1.score > 20

and t1. max_docs = 10

and tl.index_any = "<near>(G eek, Gustibus)"

Adaptive Server and the Full-Text Search engine split the query
processing, as follows:

2-6 Understanding the Full-Text Search Engine

Full-Text Search SDS Version 12.x How a Full-Text Search Works

1. The Full-Text Search engine processes the query:

select tl.score, tl.id

fromi_blurbs t1

where t1l.score > 20

and t1. max_docs = 10

and t1.index_any = "<near>(G eek, CGustibus)"

The select statement includes the Verity operator near and the
pseudo columns score, max_docs, and index_any. The operator
and pseudo columns provide the parameters for the search on
the Verity collections—they narrow the result set from the entire
copy column to the 10 documents in which the words “Greek”
and “Gustibus” appear closest to each other.

2. Adaptive Server processes the following select statement on the
result set that is returned by the Full-Text Search engine in step 1:

select tl.score, t2.copy
fromi_blurbs t1, blurbs t2
where tl.id=t2.id

This joins the blurbs and i_blurbs tables (the source table and the
index table, respectively) on the IDENTITY column of the blurbs
table and the id column of the i_blurbs table.

Figure 2-2 describes how Adaptive Server and the Full-Text Search
engine process the query.

Full-Text Search Specialty Data Store User's Guide 2-7

How a Full-Text Search Works Full-Text Search SDS Version 12.x

Full-Text Search engine

Adaptive Server
1. Index Query ——»|
< |(— >
<— 3. Results ———————\ [
/ \ ¥ N
/ 4. Adaptive Server Query / 2. Verity Query
/ \ y \
/ \ , \

blurbs i_blurbs collections
id id

1. Adaptive Server sends the index query to the Full-Text Search engine.
2. The Full-Text Search engine processes the Verity operators in the query and produces a result set

from the collections.
3. The Full-Text Search engine returns the result set to Adaptive Server.
4. Adaptive Server processes the select statement on the local table.
5. Adaptive Server displays the results of the query.

Figure 2-2: Processing a full-text search query

2-8 Understanding the Full-Text Search Engine

Installation

This chapter explains how to install and configure Enhanced Full-
Text Search.

There are three steps required to install the text server.
= Install the product using the Studio Installer
< Configure and start the text server

= Configure ASE for the text server (This is described in Chapter 4,
“Configuring Adaptive Server for Full-Text Searches.”

Installing Enhanced Full-Text Search on Windows NT

Use the Studio Installer to install the Enhanced Full-Text Search
engine.

The Studio Installer is the Sybase installation utility with a graphical
user interface that creates the target directory (if necessary), sets
Sybase environment variables, collects licensing certificate
information, and performs the basic configuration.

The Enhanced full-Text Search should be installed into an existing
Sybase directory structure that includes Adaptive Server Enterprise
12.0 or greater.

1. Log in to your Windows NT computer using an account with
administrator privileges.

2. Insert the CD in the CD-ROM drive.

3. The Studio Installer should start automatically. If it does not:
Select Start | Run, and type:
x:\setup. exe
where x: is your CD-ROM drive.

Or, choose the Windows Explorer, select the CD-ROM drive, and
double-click setup.exe.

4. Select the type of installation to be performed.
- Standard Install - installs the default components a user needs.

- Full Install - installs every component on the CD.

Full-Text Search Specialty Data Store User's Guide 3-1

Installing Enhanced Full-Text Search on Windows NT Full-Text Search SDS Version 12.x

3-2

O Note

O WARNING!

O WARNING!

O Note

In this release only the enhanced version will be installed regardless of the
selection at this step.

5. The Studio Installer displays the default installation directory.
Accept the default, or enter a different directory, then click Next.

6. A Summary screen displays a list of applications, and services
that will be installed, the disk space required, and the disk space
available. If the target directory does not have enough free space,
the information appears in red.

Click Next.

If you have insufficient disk space and click Next, an error occurs that
stops the installation.

7. If the target installation directory does not already exist, the
Studio Installer prompts: “OK to create directory?”

Click Yes.

If you are prompted to overwrite any DLLs, select Yes only if the DLL
version provided on the Sybase CD is more recent than the one
currently installed on the system. The greater number is the most
recent version.

8. A status bar shows the progress of the installation. This step may
take quite a while.

If you encounter problems during the installation, see the installation log file
to see a record of the installation process.

%SYBASE%\Installer.log

Where %SYBASE% is the SYBASE target installation directory.

9. When prompted to reboot the computer, leave the CD in the CD-
ROM drive and click Yes.

Installation

Full-Text Search SDS Version 12.x Installing Enhanced Full-Text Search on Windows NT

After rebooting, the computer accesses the CD for additional
data. For this reason, the CD must remain in the CD-ROM drive
during reboot, and the CD-ROM drive must be on the
installation machine.

After installing Full-Text Search, you must configure the text
server (Full-Text Search) and install it into ASE.

Configure Enhanced Full-Text Search for Windows NT

To configure the full-Text Search engine you must:
= Set the SYBASE environment variable
« Setthe SYBASE_FTS environment variable

= Add the Full-Text Search engine to the PATH environment
variable

= Add entries to the interfaces file (sgl.ini)
= Start the Full-Text Search engine

Set the SYBASE Environment Variable

The SYBASE environment variable must point to the Sybase
installation directory.

Set the SYBASE_FTS Environment Variable

The SYBASE_FTS must point to the directory where you installed the
enhanced FTS.

Add the Full-Text Search engine to the PATH environment variable

Set PATH = %SYBASE%\%SYBASE_FTS%\dII;%PATH%

Add entries to the interfaces file (sql.ini)

Use the dsedit utility to add entries to the interfaces file (sgl.ini).
Adaptive Server uses the interfaces file to define connection
information for servers and clients. Follow the steps below to use
dsedit:

Full-Text Search Specialty Data Store User's Guide 33

Installing Enhanced Full-Text Search on Windows NT

Full-Text Search SDS Version 12.x

3-4

1. Start dsedit in one of the following ways:

- Start the Windows NT Explorer and move to the
%SYBASE%\%SYBASE_OCS%\bin directory. Double-click on
dsedit.exe.

- Move to the %SYBASE%\%SYBASE_OCS%\bin directory. At
the command line, enter:

dsedi t
dsedit displays the Select Directory Services dialog box.

Make sure that dsedit is pointing to the correct configuration file.
The default is %SYBASE%\%SYBASE_OCS%\ini\libtcl.cfg. If
your configuration file is in another directory, change this
setting.

In the DS Name list box, highlight the directory service you want
to open, and choose OK.

dsedit displays the Interfaces Driver dialog box. Table 1 describes

the attributes.

Table 3-1: Default attributes in dsedit

Attribute

Value

Description

Server Entry
\ersion

1

Can be any positive integer value and
can be set to indicate the software
version of Adaptive Server (this
attribute works only if you use the NT
Registry Directory Services).

Server Name

server_name

The name of the Full-Text Search
engine.

Server Status

4 Unknown

Indicates the state of the Full-Text
Search engine (active, stopped, failed,
or unknown, including a
corresponding number).

Server
Address

User configures

Connection information for the Full-
Text Search engine.

4. From the Server Object drop-down list, choose Add. dsedit
displays the Input Server Name dialog box.

5. Enter the name of the Full-Text Search engine in the Server

Name box, and choose OK.

Installation

Full-Text Search SDS Version 12.x Installing Enhanced Full-Text Search on UNIX

O Note

The Full-Text Search engine uses the server name textsvr as the default
name in installation scripts and sample files. If you use Sybase Central to
start the Full-Text Search engine, Sybase recommends you add the
extension _TS to your server name. For example, TEXTSVR_TS.

dsedit returns to the Interfaces Driver dialog box, which displays
the values for Server Entry Version, Server Name, and Server
Status.

In the Interfaces Driver dialog box, double-click Server Address.

dsedit displays the Network Address Attribute dialog box.

Choose Add. dsedit displays the Input Network Address for
Protocol dialog box.

In the Protocol entry box, enter the network protocol
NLMSNMP (Named Pipes) or NLWNSCK (Winsock). These are
the only valid values for the Full-Text Search engine.

dsedit displays the Network Address dialog box.
Enter the network address information, and choose OK.

dsedit returns to the Network Address Attribute dialog box and
displays the new network connection information.

10. Choose OK to return to the Interfaces Driver dialog box.

Start the Full-Text Search Engine

You must start the Full-Text Search engine before you can continue
the configuration. For instructions, see “Starting the Full-Text Search
Engine on Windows NT” on page 7-3 of this book.

Configure ASE for the Text Server

To configure ASE for the text server proceed to Chapter 4,
“Configuring Adaptive Server for Full-Text Searches.”

Installing Enhanced Full-Text Search on UNIX

Use the Studio Installer to install the Enhanced Full-Text Search
engine.

Full-Text Search Specialty Data Store User's Guide 35

Installing Enhanced Full-Text Search on UNIX

Full-Text Search SDS Version 12.x

3-6

O Note

The Studio Installer is the Sybase installation utility with a graphical
user interface that creates the target directory (if necessary), sets
Sybase environment variables, collects licensing certificate
information, and performs the basic configuration.

For configuration information see the appropriate chapters in this
book.

Enhanced Full-Text Search should be installed into an existing
Sybase directory structure that includes Adaptive Server Enterprise
12.0.

1. Insert the CD in the CD-ROM drive. If you get CD-reading
errors, check your operating system kernel to make sure the ISO
9660 option is turned on.

2. Ensure that the CD-ROM drive is mounted.

If you are unable to mount the CD-ROM drive, consult your operating
system documentation or contact your system administrator.

3. Verify that you are logged in as the user “sybase”.
4. Atthe UNIX prompt, start the Studio Installer:;

cd / <devi ce_nane>/ cdrom
.linstall

5. Select the type of installation to be performed.
- Standard Install - installs the default components a user needs.
- Full Install - installs every component on the CD.

- Customized Install - allows user to select which components to
install.

6. The Studio Installer displays the default installation directory.
Accept the default, or enter a different directory, then click Next.

7. A Summary screen displays a list of applications, and services
that will be installed, the disk space required, and the disk space
available. If the target directory does not have enough free space,
the information appears in red.

Click Next.

Installation

Full-Text Search SDS

Version 12.x Installing Enhanced Full-Text Search on UNIX

O WARNING!

O Note

If you have insufficient disk space and click Next, an error occurs that
stops the installation.

8. If the target installation directory does not already exist, the
Studio Installer prompts: “OK to create directory?”

Click Yes.

9. If a Full Text Search installation already exists, the Studio
Installer will notify you and prompt: “Are you sure you want to
continue?”

10. A status bar shows the progress of the installation. This step may
take quite a while.

11. When prompted to configure the Full-Text Search click YES. The
srvbuild utility will start automatically.

If you encounter problems during the installation, see the installation log file
to see a record of the installation process.

$SYBASE/Installer.log

Where $SYBASE is the SYBASE target installation directory.

The srvbuild Utility

srvbuild displays the Select Servers to Build menu.

1. Choose Full-Text Search SDS. srvbuild activates the Server Name
box. The default server name that displays is the name of the
machine on which you installed the Full-Text Search engine.

2. Accept the default name or enter a new name in the Server
Name box.

Full-Text Search Specialty Data Store User's Guide 3-7

Installing Enhanced Full-Text Search on UNIX

Full-Text Search SDS Version 12.x

3-8

O Note

The Full-Text Search engine is shipped with a default configuration file
named textsvr.cfg. This file is copied to $SYBASE when the software is
unloaded from the CD. If you do not name the Full-Text Search engine
“textsvr”, srvbuild creates a configuration file named server_name.cfg. For
example, if you enter KRAZYKAT as the name of your Full-Text Search
engine, srvbuild creates a configuration file named KRAZYKAT.cfg.

3. Choose OK. srvbuild displays the Server Attribute Editor dialog
box, where you select options for the configuration file and the
Full-Text Search engine entries for the interfaces file.

Following are the configuration file options—the only option
you must select is the error log path:

- Error log path — the full path name to the Full-Text Search
engine error log file. The default entry for the error log path is
$SYBASE/$SYBASE_FTS/install/server_name.log.

- Collection directory —the location of the Verity collections. The
default location of the collections is
$SYBASE/$SYBASE_FTS/collections.

- Default database — the name of the database that contains the
metadata used by the Full-Text Search engine. The default
name is text_db. This database is created in Adaptive Server
and contains the vesaux and vesauxcol tables. You are only
naming the default database at this time; you will create the
database itself later, following the instructions in “Running the
installtextserver Script” on page 4-2.

- Language - the language used by the Full-Text Search engine.
The default is us_english. Set the language parameter to the
same value as Adaptive Server.

- Character set — the character set used by the Full-Text Search
engine. The default is iso_1. The character set parameter
should be set to the same value as Adaptive Server.

- Minimum number of sessions — defines the min_sessions
parameter, which specifies the minimum number of user
sessions for the Full-Text Search engine. The default is 10. For
more information about min_sessions, see “min_sessions and
max_sessions” on page 8-4.

- Maximum number of sessions — defines the max_sessions
parameter, which specifies the maximum number of user

Installation

Full-Text Search SDS Version 12.x Installing Enhanced Full-Text Search on UNIX

sessions for the Full-Text Search engine. The default is 100. For
more information about max_sessions, see “min_sessions and
max_sessions” on page 8-4.

You can adjust any of these options for a configuration that best
suits your site. srvbuild lists only the required configuration
parameters. For a complete list of parameters and how to change
them, see “Modifying the Configuration Parameters” on page
7-5.

4. Choose the Build Server! button to build the Full-Text Search
engine. srvbuild displays the Status Output window, which
describes the process of building the Full-Text Search engine.
While building the Full-Text Search engine, srvbuild creates the
runserver and configuration files and also sets the SYBASE and
LD_LIBRARY_PATH environment variables.

5. EXxit srvbuild.

Starting the Full-Text Search Engine

After srvbuild completes, the Full-Text Search engine is running, but is
not yet connected to Adaptive Server.

Configure ASE for Full-Text Search

To configure ASE for the text server proceed to Chapter 4,
“Configuring Adaptive Server for Full-Text Searches.”

Full-Text Search Specialty Data Store User's Guide 39

Installing Enhanced Full-Text Search on UNIX Full-Text Search SDS Version 12.x

3-10 Installation

Configuring Adaptive Server for
Full-Text Searches

This chapter describes how to configure Adaptive Server to perform
full-text searches. Topics include:

= Configuring Adaptive Server for a Full-Text Search Engine 4-1
= Creating and Maintaining the Text Indexes 4-6

Configuring Adaptive Server for a Full-Text Search Engine

The Full-Text Search engine is a remote server that Adaptive Server
connects to through Component Integration Services (CIS). Before
you can use the Full-Text Search engine, you must configure
Adaptive Server for the Full-Text Search engine as follows:

= Enable the enable cis and cis rpc handling configuration parameters if
you have not done so

< Run the installtextserver script to define one or more Full-Text
Search engines

< Run the installmessages script to install messages for the Full-Text
Search engine’s system procedures

« Runtheinstallevent script to create the text_events table in each user
database which will contain text indexes.

« Name the local server and reboot.

Enabling Configuration Parameters

To connect to the Full-Text Search engine, Adaptive Server must be
running with the enable cis and cis rpc handling configuration
parameters enabled. If those parameters are not enabled, log in to
Adaptive Server using isql and use sp_configure to enable them. For
example:

exec sp_configure "enable cis", 1
exec sp_configure "cis rpc handling", 1

Adaptive Server displays a series of messages stating that you have
altered a configuration parameter and that Adaptive Server must be
rebooted for the new configuration parameters to take effect.

Full-Text Search Specialty Data Store User's Guide 4-1

Configuring Adaptive Server for a Full-Text Search Engine

Full-Text Search SDS Version 12.x

42

Running the installtextserver Script

O Note

The installtextserver script:

= Defines the Full-Text Search engine as a remote server of server
class sds to Adaptive Server.

= Creates a database for storing text index metadata. For more
information about this database, see “The text_db Database” on
page 2-2.

< |nstalls the system procedures required by the Full-Text Search
engine.

Run the installtextserver script only once (see “Running the
installtextserver Script” on page 4-3). To add Full-Text Search
engines at a later time, use sp_addserver. See “Configuring Multiple
Full-Text Search Engines” on page 8-5 for more information about
sp_addserver.

All Full-Text Search engines use the same database for storing text
index metadata. This database is referred to in this book as the
text_db database, the default name.

For a list and description of the system procedures added with the
installtextserver script, see Appendix A, “System Procedures.”

Editing the installtextserver Script

The installtextserver script is located in the
$SYBASE/$SYBASE_FTS/scripts directory. Use a text editor (such as
vi or emacs) to open the script, and make your edits. The edits you can
make are as follows:

= Changing the name of the text_db database. If you use a different
name, replace all occurrences of text_db with the appropriate
name.

If you change the name of the text_db database, you must change the
name in the defaultDb configuration parameter (see “Modifying the
Configuration Parameters” on page 7-5).

= Changing the name of the Full-Text Search engine. By default, the
installtextserver script defines a Full-Text Search engine named
“textsvr.” If your Full-Text Search engine is named differently,
edit this script so that it defines the correct server name.

Configuring Adaptive Server for Full-Text Searches

Full-Text Search SDS Version 12.x Configuring Adaptive Server for a Full-Text Search Engine

exec
exec

exec
exec

= Adding multiple Full-Text Search engines (for information on

how this can enhance performance, see “Configuring Multiple
Full-Text Search Engines” on page 8-5). If you are initially
defining more than one Full-Text Search engine, edit the
installtextserver script so that it includes all the Full-Text Search
engine definitions. installtextserver includes the following section
for naming the Full-Text Search engine you are configuring
(“textsvr” by default):

/*

** Add the text server

*/

exec sp_addserver textsvr, sds,textsvr
go

Add an entry for each Full-Text Search engine you are
configuring. For example, if you are configuring three Full-Text
Search engines named KRAZYKAT, OFFICAPUP, and MOUSE,
replace the default “textsvr” line with the following lines:

exec sp_addserver KRAZYKAT, sds, KRAZYKAT

exec sp_addserver OFFlI CAPUP, sds, OFFI CAPUP

exec sp_addserver MOUSE, sds, MOUSE

go

If you use OmniConnect to communicate with the Full-Text
Search engine, change the server name specification in the
sp_addobjectdef calls for the vesaux and vesauxcol tables to a valid

remote server. For example, if your remote server is named
REMOTE, change the lines:

sp_addobj ect def "vesaux"," SYBASE. nmast er. dbo. vesaux", "t abl e"

sp_addobj ect def "vesauxcol ", " SYBASE. nast er. dbo. vesauxcol ", "tabl e"
to:

sp_addobj ect def "vesaux","REMOTE. nmast er. dbo. vesaux", "t abl e"

sp_addobj ect def "vesauxcol ", " REMOTE. nast er. dbo. vesauxcol ", "tabl e"

Running the installtextserver Script

Use isgl to run the installtextserver script. For example, to run the
installtextserver script in an Adaptive Server named MYSVR, enter:

isql -Usa -P - SMYSVR -i
$SYBASE/ $SYBASE_FTS/ scri pts/instal | textserver

Full-Text Search Specialty Data Store User's Guide 4-3

Configuring Adaptive Server for a Full-Text Search Engine Full-Text Search SDS Version 12.x

Running the installmessages Script

The Full-Text Search engine has its own set of system procedure
messages that you must install in Adaptive Server. Use the
installmessages script to install the messages. You run the installmessages
script only once, even if you have multiple Full-Text Search engines.

For example, to run the installmessages script in a server named
MYSVR, enter:

isql -Usa -P -SMYSVR -i
$SYBASE/ $SYBASE_FTS/ scri pts/instal | mnessages

Running the installevent Script

O Note

4-4

Each database containing tables referenced by a text index must
contain atext_events table, which logs inserts, updates, and deletes to
indexed columns. It is used to propagate updated data to the Verity
collections.

Run the installevent script, as described below, to create the text_events
table and associated system procedures in a database. Use the
installevent script as follows:

< |f all databases require text indexes, run the installevent script to
create a text_events table in the model database. Each newly
created database will then have a text_events table. To add a
text_events table to existing databases, edit the script as described
below to create the text_events table in the existing user database.

= If not all databases have text indexes, use the installevent script as a
sample. For each existing database and each new database that
includes tables that require text indexing, run the installevent
script. You must edit the script as described below, to create the
text_events table in the correct user database.

If a text_events table does not exist in a database that includes source
tables that require text indexing, changes to the source table will not be
propagated to the Verity collections.

Configuring Adaptive Server for Full-Text Searches

Full-Text Search SDS Version 12.x Configuring Adaptive Server for a Full-Text Search Engine

O Note

Editing the installevent Script

The installevent script is located in the $SYBASE/$SYBASE_FTS/scripts
directory. Use a text editor (such as vi or emacs) to open the script, and
make the edits. The edits you can make are:

« Changing the user database name. The installevent script creates an
events table (named text_events) and associated system
procedures in the model database. The model database is the
default database. To install the text_events table in an existing user
database, edit the script and replace all references to model with
the user database name.

= Changing the text_db database name. If your database for storing
text index metadata is named something other than text_db,
replace all references to text_db with the appropriate name.

The name of the text_db database must be the same as the name in the
defaultDb configuration parameter (see “Modifying the Configuration
Parameters” on page 7-5).

Running the installevent Script

Using isqgl, run the installevent script to install the text_events table and
related system procedures in Adaptive Server. For example, to run
the installevent script in a server named MYSVR, enter:

isgl -Usa -P -SMYSVR -i $SYBASE/ $SYBASE_FTS/ scri pts/install event

O Note

The text_db database must exist before you run the installevent script. If it
does not exist, run the installtextserver script first.

Name the local server

When using the full-Text Search engine with ASE 12.0, you must
name the local ASE server using the stored procedure, sp_addserver
<servername>, local. After issuing sp_addserver, the local server must be
rebooted. Do not install any system stored procedures in the model
database. They should be installed in sybsystemprocs. If they are

Full-Text Search Specialty Data Store User's Guide 4-5

Creating and Maintaining the Text Indexes Full-Text Search SDS Version 12.x

installed in model, every new database that is created will inherit a
copy.

Creating and Maintaining the Text Indexes

46

Before the Full-Text Search engine can process full-text searches, you
must create text indexes for the source tables in the user database.
After the text indexes are created, you must update them when the
source data changes to keep the text indexes current. To create and
maintain the text indexes:

= Set up the source table for indexing (see “Setting Up Source
Tables for Indexing” on page 4-6).

= Create the text indexes and index tables (see “Creating the Text
Index and Index Table” on page 4-7).

= Bring the databases online for full-text searches (see “Bringing
the Database Online for Full-Text Searches” on page 4-9).

= Propagate changes in the user data to the text indexes (see
“Propagating Changes to the Text Index” on page 4-10).

= [fyou are replicating text indexes, set up text indexing in the
destination database (see “Replicating Text Indexes” on page
4-10).

For an example of setting up a text index, see the sample script
sample_text_main.sgl in the $SYBASE/$SYBASE_FTS/sample/scripts
directory.

Setting Up Source Tables for Indexing

The source table contains the data on which you perform searches
(for example, the blurbs table in the pubs2 database). For more
information on source tables, see “The Source Table” on page 2-1.

Before you can create text indexes on a source table, you must:
= Verify that the source table has an IDENTITY column
= Create a unique index on the IDENTITY column (optional)

Adding an IDENTITY Column to a Source Table

Every source table must contain an IDENTITY column to uniquely
identify each row and provide a means of joining the index table and
the source table. When you create a text index, the IDENTITY

Configuring Adaptive Server for Full-Text Searches

Full-Text Search SDS Version 12.x Creating and Maintaining the Text Indexes

column is passed with the indexed columns to the Full-Text Search
engine. The IDENTITY column value is stored in the text index and
is mapped to the id column in the index table.

For example, to create an IDENTITY column in a table named
composers, define the table as follows:

create tabl e conposers (

id numeric(mn) identity,
conp_fname char (30) not null,
conp_| nane char (30) not null,
text _col t ext

)

where m =< 38 and n always =0
To add an IDENTITY column to an existing table, enter:

alter table table_nane add id nuneric(10,0) identity

Adding a Unique Index to an IDENTITY Column

For optimum performance, Sybase recommends creating a unique
index on the IDENTITY column. For example, to create a unique
index named comp_id on the IDENTITY column created above, enter:

create unique index conp_id
on conposers(id)

For more information about creating a unique index, see Chapter 11,
“Creating Indexes on Tables,” of the Transact-SQL User’s Guide.

Creating the Text Index and Index Table

Use the sp_create_text_index system procedure to create the text
indexes. sp_create_text_index does the following:

= Updates the vesaux and vesauxcol tables in the text_db database
= Creates the text index (Verity collections)
= Populates the Verity collections

« Creates the index table in the user database where the source
table is located

The text index can contain up to 16 columns. Columns of the
following datatypes can be indexed:

Full-Text Search Specialty Data Store User's Guide 4-7

Creating and Maintaining the Text Indexes Full-Text Search SDS Version 12.x

48

Standard Version Datatypes

char, varchar, nchar, nvarchar, text, image, datetime, smalldatetime

Enhanced Version Datatypes
All Standard version datatypes, plus:
int, smallint, and tinyint

For example, to create a text index and an index table named i_blurbs
for the copy column in the blurbs table in pubs2 on KRAZYKAT, enter:

sp_create_text_index "KRAZYKAT", "i_blurbs", "blurbs", " ",

" copy”

O Note

O Note

where:
= KRAZYKAT is the name of the Full-Text Search engine

< i_blurbs is the name of the index table and text index you are
creating

= blurbs is the source table on which you are creating the text
indexes

= "" isaplaceholder for text index creation options
= copy is the column in the blurbs table that you are indexing
See “sp_create_text_index” on page A-6 for more information.

Make sure the text_db database name in the configuration file (listed after
the defaultDb parameter) matches the database name in Adaptive Server. If
they do not match, the text index cannot be created. Also, verify that the
text_events table exists in the user database. If it does not exist, run the
installevent script for that database (refer to “Running the installevent Script”
on page 4-4).

Populating the Verity collections can take a few minutes or several
hours, depending on the amount of data you are indexing. You may
want to perform this step when the server is not being heavily used.
Increasing the batch_size configuration parameter will also expedite
the process. See “batch_size” on page 8-4 for more information.

Do not rename an index because the Verity collection will not be renamed.

Configuring Adaptive Server for Full-Text Searches

Full-Text Search SDS Version 12.x Creating and Maintaining the Text Indexes

Specifying Multiple Columns When Creating a Text Index

When you create a text index on two or more columns, each column
in the text index is placed into its own document zone. The name of
the zone is the name of the column. For example, to create a text
index and an index table named i_blurbs for both the copy column
and the au_id column in the blurbs table in pubs2 on KRAZYKAT,
enter:

sp_create_text_index "KRAZYKAT", "i_blurbs", "blurbs", " ",
“copy", "au_id"

sp_create_text_index creates two zones in the text index named “copy”
and “au_id.” When you issue a query against the i_blurbs text index,
the search includes the copy and au_id columns. However, you can
limit your search to a particular column by using the in operator to
specify a document zone (for more information, see “in” on page
6-12).

Bringing the Database Online for Full-Text Searches

O Note

With the Standard version of Full-Text Search engine, you must
manually bring a database online before issuing full-text queries on
asource table in the database. When you bring a database online, the
Full-Text Search engine initializes the internal Verity structures and
confirms that the Verity collections exist.

With the Enhanced Full-Text Search engine, the database is automatically
brought online when the auto_online configuration parameter is set to 1.

Use the sp_text_online system procedure to bring a database online for
full-text searches if it is not automatically brought online. For
example, to bring the pubs2 database online before issuing full-text
searches on the blurbs table in a Full-Text Search engine named
KRAZYKAT, enter:

sp_text_online KRAZYKAT, pubs2
This message appears:
Dat abase ‘ pubs2’ is now online

The pubs2 database is now available for performing full-text
searches.

See “sp_text_online” on page A-33 for more information.

Full-Text Search Specialty Data Store User's Guide 4-9

Creating and Maintaining the Text Indexes Full-Text Search SDS Version 12.x

Propagating Changes to the Text Index

When you insert, update, or delete data in your source table, the text
indexes are not updated automatically. After you update data, run
the sp_refresh_text_index system procedure to log the changes to the
text_events table. Then, run the sp_text_notify system procedure to
notify the Full-Text Search engine that changes need to be processed.
The Full-Text Search engine then connects to Adaptive Server, reads
the entries in the text_events table, determines which indexes, tables,
and rows are affected, and updates the appropriate collections.

See “sp_refresh_text_index” on page A-16 and “sp_text_notify” on
page A-32 for more information on these system procedures.

To have sp_refresh_text_index run automatically after each insert, update,
or delete, you can create triggers on your source tables, as follows:

< Create a trigger that runs sp_refresh_text_index after a delete
operation.

= Create a trigger that runs sp_refresh_text_index after an insert
operation.

= Create a trigger that runs sp_refresh_text_index after an update
operation to an indexed column.

Triggers are not fired when you use writetext to update a text column.
To have sp_refresh_text_index automatically run after a writetext:

= Set up a non-text column and update that column after each
writetext.

= Create a trigger on the non-text column to run sp_refresh_text_index.
Since the Full-Text Search engine reinserts the entire row when
you issue sp_text_notify, the update to the text column gets
propagated to the text index.

For examples of each of these triggers, see the sample script
sample_text_main.sgl in the $SYBASE/$SYBASE_FTS/sample/scripts
directory.

Replicating Text Indexes

To replicate tables that have text indexes, follow these guidelines:
= Create the table definition in the destination database.

= Run the installevent script to create the text_events table in the
destination database, if the text_events table does not already exist
(see “Running the installevent Script” on page 4-4).

4-10 Configuring Adaptive Server for Full-Text Searches

Full-Text Search SDS Version 12.x Creating and Maintaining the Text Indexes

O Note

= Run sp_create_text_index to create the text index on the empty table
in the destination database (see “Creating the Text Index and
Index Table” on page 4-7).

= Create triggers for running sp_refresh_text_index to insert entries into
the text_events table whenever you insert, update, or delete data into
the table (see “Propagating Changes to the Text Index” on page
4-10).

= Create the replication definition in the Replication Server. This
replicates all the data in the source table to the destination table.
Refer to the “Replication Server Administration Guide” for more
details.

< Run sp_text_notify to update the text index; run sp_text_notify
periodically to process changes to the destination table (see
“Propagating Changes to the Text Index” on page 4-10).

You must issue an update against a non-text column whenever a writetext
command is performed. This ensures that the trigger that inserts data into
the text_events table is fired.

Example: Enabling a New Database for Text Searches

This example describes the steps for creating a text index on the plot
column of the reviews table in the movies database. This process
assumes that:

= You have created a reviews table in a new database named movies
on the MYSVR server

< The reviews table has a column named plot that you are going to
index

= Adaptive Server and the Full-Text Search engine named
MYTXTSVR have been configured to connect to each other

Step 1. Verify that the text_events Table Exists

Each database containing tables referenced by a text index must
contain atext_events table, which logs inserts, updates, and deletes to
indexed columns.

If a text_events table is in your model database, it will be in all new
databases. If a text_events table is not in your model database, run the

Full-Text Search Specialty Data Store User's Guide 4-11

Creating and Maintaining the Text Indexes

Full-Text Search SDS Version 12.x

4-12

installevent script to install the text_events table in the new database.
For example, to install the text_events table in the movies database:

= Save the installevent script as installeventmovies.

= Edit the script to replace all references to the word model with the
word movies.

< Run the script as follows:

isql -Usa -P - SMYSVR -i
$SYBASE/ $SYBASE_FTS/ scri pts/instal | event novi es

See “Running the installevent Script” on page 4-4 for information on
installing the text_events table.

Step 2. Check for an IDENTITY Column

Every source table must contain an IDENTITY column, which
uniquely identifies each row and provides a means of joining the
index table and the source table.

For example, to add an IDENTITY column to the reviews table, enter:
alter table reviews add id numeric(10,0) identity

See “Adding an IDENTITY Column to a Source Table” on page 4-6
for more information on creating an IDENTITY column.

Step 3. Create a Unique Index on the IDENTITY Column

This step is optional. To enhance performance, Sybase recommends
creating a unique index that contains only the IDENTITY column.
For example, to create a unique index named reviews_id on the
IDENTITY column created in step 2, issue the command:

create unique index reviews_id on reviews(id)

For more information about creating a unique index, see Chapter 11,
“Creating Indexes on Tables,” of the Transact-SQL User’s Guide.

Step 4. Create the Text Index and Index Table

The source tables in the user database need to be indexed so that you
can perform full-text searches. For example, to create a text index and
an index table named reviews_idx for the plot column in the reviews
table, enter:

sp_create_text_index "MYTXTSVR', "reviews_idx", "reviews", ,

"plot"

Configuring Adaptive Server for Full-Text Searches

Full-Text Search SDS Version 12.x Creating and Maintaining the Text Indexes

The reviews table is now available for running full-text searches.
See “sp_create_text_index” on page A-6 for more information.

Step 5. Bring the Database Online for a Full-Text Search

To bring the movies database online for the Full-Text Search engine
named MYTXTSVR, enter:

sp_text_online MYTXTSVR, novies

O Note

Omit this step if you have Enhanced Full-Text Search engine and your
auto_online configuration parameter is set to “1”.

See “sp_text_online” on page A-33 for more information.

Full-Text Search Specialty Data Store User's Guide 4-13

Creating and Maintaining the Text Indexes Full-Text Search SDS Version 12.x

4-14 Configuring Adaptive Server for Full-Text Searches

Setting Up Verity Functions

This chapter describes the setup required before you can write
queries with certain Verity functionality. It includes:

= Enabling Query-By-Example, Summarization, and Clustering
5-1

= Setting Up a Column to Use As a Sort Specification 5-4

= Using Filters on Text That Contains Tags 5-6

e Creating a Custom Thesaurus (Enhanced Version Only) 5-8
= Creating Topics (Enhanced Version Only) 5-12

Enabling Query-By-Example, Summarization, and Clustering

The style.prm file specifies additional data to include in the text
indexes to support the following functionality:

= Query-by-example — Retrieves documents that are similar to a
phrase (see “like” on page 6-13 for more information).

O Note

The text indexes only need additional data to support phrases in the query-
by-example specification of the like operator. If you use a document in the
query-by-example specification, additional data is not required.

= Summarization — returns summaries of documents rather than
entire documents (see “Using the summary Column to
Summarize Documents” on page 6-6 for more information).

= Clustering — groups documents in result sets by subtopic (see
“Using Pseudo Columns to Request Clustered Result Sets” on
page 6-6 for more information). Clustering is available only with
the Enhanced Full-Text Search engine.

You can enable these features for all text indexes by editing the
master style.prm file, or you can enable them for an individual text
index by editing its style.prm file. Both methods are describe below.
Query-By-Example and Clustering

To use phrases in a query-by-example specification and to use
clustering, you must enable the generation of document feature

Full-Text Search Specialty Data Store User's Guide 5-1

Enabling Query-By-Example, Summarization, and Clustering Full-Text Search SDS Version 12.x

5-2

The
the
#$def i

The
the
#$def i

The
the
#$def i

vectors at indexing time. To do this, uncomment the following line in
the style.prm file;

$defi ne DOC- FEATURES " TF"

Summarization

To configure the Full-Text Search engine for summarization,
uncomment one of the following lines that starts with “#$define” in
the style.prm file:

exanpl e bel ow stores the best three sentences of
docunent, but not nore than 255 bytes.
ne DOC- SUMVARI ES "XS MaxSents 3 MaxBytes 255"

exanpl e bel ow stores the first four sentences of
docunent, but not nore than 255 bytes.
ne DOC- SUVWWARIES "LS MaxSents 4 MaxBytes 255"

exanpl e bel ow stores the first 150 bytes of
docunent, with whitespace conpressed.
ne DOC- SUMVARI ES "LB MaxBytes 150"

Each of those lines reflects a different level of summarization.
You can specify how many bytes of data you want the Full-Text
Search engine to display, by altering the numbers at the ends of
these lines. For example, if you want only the first 233 bytes of
data summarized, edit the script to read:

$defi ne DOC- SUMMARIES "LS MaxSents 4 MaxBytes 233"

The maximum number of bytes displayed is 255. Any number
greater than that is truncated to 255.

Editing the Master style.prm File

The master style.prm file is located in:
$SYBASE/$SYBASE_FTS/verity/common/style

It contains the default Full-Text Search engine style parameters. Edit
this file to configure the Full-Text Search engine so that all tables on
which you create text indexes allow clustering and literal text in your
query-by-example specifications, or summarization. Uncomment
the applicable lines as described above.

Setting Up Verity Functions

Full-Text Search SDS Version 12.x Enabling Query-By-Example, Summarization, and Clustering

O Note

If you have existing text indexes, you must re-create the text index with
these features enabled as described in “Editing Individual style.prm Files”
below.

Editing Individual style.prm Files

O Note

Perform the following steps to configure the Full-Text Search engine
so that the individual text index allows clustering and literal text in
your query-by-example specifications, or summarization:

1.

Create the text index using sp_create_text_index. Use the word
“empty” in the option_string parameter so that the style.prm file is
created for the text index, but the Verity collections are not
populated with data. For example, if you are enabling clustering
for the copy column of the blurbs table, use the following syntax:

sp_create_text_index "KRAZYKAT", "i_blurbs",
"blurbs", "enpty", "copy"

If the text index already exists, omit this step. You do not need to create the
text index again.

2. Use sp_drop_text_index to drop the text index associated with the

style.prm file you are editing.
For example, to drop the text index created in step 1, enter:
sp_drop_text_index "blurbs.i_blurbs"”

Edit the style.prm file that exists for the text index. The style.prm
file for an existing collection is located in:

$SYBASE/$SYBASE_FTS/collections/db.owner.index/style

where db.owner.index is the database, the database owner, and
the index created with sp_create_text_index. For example, if you
create a text index called i_blurbs on the pubs2 database, the full
path to these files is:

$SYBASE/$SYBASE_FTS/collections/pubs2.dbo.i_blurbs/style

4. Uncomment the applicable lines as described above.

Full-Text Search Specialty Data Store User's Guide 5-3

Setting Up a Column to Use As a Sort Specification Full-Text Search SDS Version 12.x

For example, to enable clustering, uncomment the following
line:

$defi ne DOC- FEATURES " TF"

5. Re-create the text index you dropped in step 2. For example, to
re-create the i_blurbs text index, enter:

sp_create_text_index "KRAZYKAT", "i_blurbs", "blurbs", "", "copy"

Setting Up a Column to Use As a Sort Specification

Before you can sort by specific columns, you must modify the
style.vgw and style.ufl files. (For information on including a column in
a sort specification, see “Using the sort_by Column to Specify a Sort
Order” on page 6-4.) Both files are in the directory:

$SYBASE/$SYBASE_FTS/collections/db.owner.index/style

where db.owner.index is the database, the database owner, and the
index created using sp_create_text_index. For example, if you created a
text index called i_blurbs on the pubs2 database, the full path to those
files would be similar to:

$SYBASE/$SYBASE_FTS/collections/pubs2.dbo.i_blurbs/style
To edit the style.vgw and style.ufl files, follow these steps:

1. Drop the text index that contains the columns for which you are
adding definitions. (Dropping the text index does not drop the
collection directory.)

For example, to add definitions for the copy column in the blurbs
table, use the following command to drop the text index:

sp_drop_text _index i_blurbs
2. Edit the style.vgw file. Following this line:
dda " SybaseText Server™"
add an entry for the column you are defining. The syntax is:

t abl e: DOCUMENTS
{

}

where column_number is the number of the column you are
defining. Column numbers start with 0; if you want the first
column to be sorted, specify “f0”; to sort the second column,
specify “f1”; to sort the third column, specify “f2”, and so on.

copy: fcol um_nunber copy_col utm_nunber

5-4 Setting Up Verity Functions

Full-Text Search SDS Version 12.x Setting Up a Column to Use As a Sort Specification

For example, to define the first column in a table, the syntax is:

tabl e: DOCUMENTS
{

}
Then, your style.vgw file will be similar to this:

#

Sybase Text Server Gateway
#

$control: 1

gat eway:

{
{

}
}

Edit the style.ufl file, by adding the column definition for a data
table named fts. The syntax is:

copy: fO copy_fO

dda: " SybaseText Server"

copy: fO copy_fO

dat a-t abl e: fts

{

fixwi dth: copy_fcol um_nunber precision datatype

}

Column numbers start with 0; if you want the first column to be
sorted, specify “f0”; to sort the second column, specify “f1”; to
sort the third column, specify “f2”, and so on. For example, to
add a definition for the first column of a table, with a precision of
4, and a datatype of date, enter:

data-table: fts
{

}

Similarly, to add a definition for the second column of a table
with a precision of 10, and a datatype of character, enter:

data-table: fts
{

}

fixw dth: copy_fO 4 dat e

fixw dth: copy_f1l 10 text

4. Re-create the index, using sp_create_text_index.

Full-Text Search Specialty Data Store User's Guide 5-5

Using Filters on Text That Contains Tags Full-Text Search SDS Version 12.x

Using Filters on Text That Contains Tags

5-6

To perform accurate searches on documents that contain tags (such
as HTML or postscript), the text index must use a filter to strip out
the tags. The Standard Full-Text Search engine provides filtering for
SGML and HTML documents. The Enhanced Full-Text Search
engine provides filters for a variety of document types (Microsoft
Word, FrameMaker, WordPerfect, SGML, HTML, and others).

When you create the text index to use a filter, the data for each type
of tag in the document is placed into its own document zone. For
example, if you have a tag called “chapter,” all chapter names are
placed into one document zone. You can issue a query that searches
the entire document, or that searches only for data in the “chapter”
zone (for more information, see “in” on page 6-12).

To create a text index that uses a filter, modify the style.dft file for that
text index. To edit the style.dft file, follow these steps:

1. Create the text index using sp_create_text_index. Use the word
“empty” in the option_string parameter so that the style.dft file is
created for the text index, but the Verity collections are not
populated with data. For example, to create a text index for the
copy column of the blurbs table, use the following syntax:

sp_create_text_index "KRAZYKAT", "i_blurbs",
nbl UrbS", uen.pt yul ucopyu

2. Drop the text index that you create in step 1. This drops the text
index, but not the style.dft file. For example, use the following
command to drop the i_blurbs text index:

sp_drop_text _index i_blurbs
3. Edit the style.dft file. The style.dft file is in the directory:
$SYBASE/$SYBASE_FTS/collections/db.owner.index/style

where db.owner.index is the database, the database owner, and
the index created using sp_create_text_index. For example, if you
created a text index called i_blurbs on the pubs2 database, the full
path to the style.dft file would be similar to:

$SYBASE/$SYBASE_FTS/collections/pubs2.dbo.i_blurbs/style
Following this line:

field: fO

add syntax to use a filter.

With Standard Full-Text Search engine, use the following syntax:

Setting Up Verity Functions

Full-Text Search SDS Version 12.x Using Filters on Text That Contains Tags

- For SGML documents, use:
[filter="zone -nocharnap"

- For HTML documents, use:
[filter="zone -htm -nocharnap”

With Enhanced Full-Text Search engine, use the following syntax
for all document types:

/[filter="universal"

For example, your style.dft file for an SGML document in the
Standard version will look like this:

$control : 1

dft:
field: fO
[filter="zone -nocharnap"
field: f1
field: f2
field: fi5
{

Your style.dft file for an SGML document in the Enhanced
version will look like this:

$control : 1

dft:
{
field: fO
/[filter="universal"
field: f1
field: f2
field: f15
{

Full-Text Search Specialty Data Store User's Guide 5-7

Creating a Custom Thesaurus (Enhanced Version Only)

Full-Text Search SDS Version 12.x

O Note

Use getsend to load the database with document data. getsend takes the
following arguments: database, table, column and row id. Insert a null value
for the rowid for each row of text you wish to insert. getsend must insert into
an image column for filtering to work. For more information on getsend, refer
to the README.TXT file and getsend.c file in
$SYBASE/$SYBASE_FTS/sample/source directory.

4. Re-create the index, using sp_create_text_index. For example:

sp_create_text_index "KRAZYKAT", "i_blurbs", "blurbs",
", "copy"

Creating a Custom Thesaurus (Enhanced Version Only)

5-8

The Verity thesaurus operator expands a search to include the
specified word and its synonyms (for information on using the
thesaurus operator, see “thesaurus” on page 6-16). In the Enhanced
version of the Full-Text Search engine, you can create a custom
thesaurus that contains application-specific synonyms to use in place
of the default thesaurus.

For example, the default English language thesaurus contains these
words as synonyms for “money””: “cash,” ”currency,” "lucre,”
“wampum,” and greenbacks.” You can create a custom thesaurus
that contains a different set of synonyms for “money”; for example,
such as: ”bid,” tokens,” ”credit,” ”asset,” and "verbal offer.”

To create a custom thesaurus, follow these steps:

1. Make a list of the synonyms that you will use with your
application. It may help to examine the default thesaurus (see
“Examining the Default Thesaurus (Optional)” on page 5-9).

2. Create a control file that contains the synonyms you are defining
for your custom thesaurus (see “Creating the Control File” on
page 5-9).

3. Create the custom thesaurus using the mksyd utility (see
“Creating the Thesaurus” on page 5-10). This uses the control file
as input.

4. Replace the default thesaurus with your custom thesaurus (see
“Replacing the Default Thesaurus with the Custom Thesaurus”
on page 5-11).

Setting Up Verity Functions

Full-Text Search SDS Version 12.x Creating a Custom Thesaurus (Enhanced Version Only)

For more information on “Custom Thesaurus Support” and the
mksyd utility, see the Verity Web site at:

http://www.verity.com

In the Enhanced version of Full-Text Search engine, two sample files
illustrate how to set up and use a custom thesaurus:

« sample_text_thesaurus.ctl is a sample control file

= sample_text_thesaurus.sqgl issues queries against the custom
thesaurus defined in the sample control file

These files are in the $SYBASE/$SYBASE_FTS/sample/scripts
directory.

Examining the Default Thesaurus (Optional)

A control file contains all the synonym definitions for a thesaurus. To
examine the default thesaurus, create its control file using the mksyd
utility. Use the syntax:

nksyd -dunp -syd
$SYBASE/ $SYBASE_FTS/ verity/ common/ vdkLanguage/ vdk20. syd -f
wor k_| ocation/control _file.ctl

where:

< vdkLanguage - is the value of the vdkLanguage configuration
parameter (for example, “english”)

< work_location - is the directory where you want to place the
control file

= control_file — is the name of the control file you are creating from
the default thesaurus

Examine the control file (control_file.ctl) that it creates to view the
default synonym lists.

Creating the Control File

Create a control file that contains the new synonyms for your custom
thesaurus. The control file is an ASCII text file in a structured format.
Using a text editor (such as vi or emacs), either:

= Edit the control file from the default thesaurus and add new
synonyms to the existing thesaurus (see “Examining the Default
Thesaurus (Optional)” on page 5-9), or

= Create a new control file that includes only your synonyms

Full-Text Search Specialty Data Store User's Guide 5-9

Creating a Custom Thesaurus (Enhanced Version Only)

Full-Text Search SDS Version 12.x

5-10

O Note

Control File Syntax

The control file contains synonym list definitions in a synonyms:
statement. For example, the following is a control file named
colors.ctl:

$control : 1

sSynonynmns:
{

list: "red, ruby, scarlet, fuchsia,\
magent a"

list: "electric blue <or> azure"
/keys = "l apis"

}

$$

The synonyms: statement includes:

= list: keywords that specify the start of a synonym list. The
synonyms in the list are either in query form or in a list of words
or phrases separated by commas.

= Each list: can optionally have a /keys modifier that specifies one or
more keys separated by commas. In the example above, no keys
are specified in the first “list”. This means the list is found when
the thesaurus is queried for the word “red,” “ruby,” “scarlet,”
“fuchsia,” or “magenta.” The second “list” uses the /keys modifier
to specify one key. This means the words or phrases in the list will
satisfy a query only when you specify <thesaurus>lapis.

If you use emacs to build a synonym list and any of your lists go beyond one
line, turn off auto-fill mode. If you separate your list into multiple lines,
include a backslash (\) at the end of each line so that the lines are treated
as one list.

For more complex examples of control files, see the Verity Web site.

Creating the Thesaurus

The mksyd utility creates the custom thesaurus using a control file as
input. Itis located in:

$SYBASE/$SYBASE_FTS/verity/bin

Setting Up Verity Functions

Full-Text Search SDS Version 12.x Creating a Custom Thesaurus (Enhanced Version Only)

Run, or define an alias to run, mksyd from this bin directory. Create
your custom thesaurus in any work directory.

The mksyd syntax for creating a custom thesaurus is:
nmksyd -f control _file.ctl -syd customthesaurus. syd
where:

= control_file — is the name of the control file you create in “Creating
the Control File” above

= custom_thesaurus — is the name of the custom thesaurus you are
creating

For example, to execute the mksyd utility reading the sample control
file defined above, and directing output to a work directory, use the
syntax:

nmksyd -f /usr/u/sybase/dba/thesaurus/col ors.ctl
-syd /usr/ul/ sybase/ dba/t hesaurus/cust om syd

Replacing the Default Thesaurus with the Custom Thesaurus

The default thesaurus named vdk20.syd is located in:
$SYBASE/$SYBASE_FTS/verity/common/vdkLanguage

where vdkLanguage is the value of the vdkLanguage configuration
parameter (for example, the English directory is
$SYBASE/$SYBASE_FTS/verity/common/english). Each application
and user reading from this location at runtime uses this thesaurus. To
replace it with your custom thesaurus, follow these steps:

1. Back up the default thesaurus before replacing it with the
custom thesaurus. For example:

mv [$SYBASE/ $SYBASE_FTS/ veri ty/ common/ engl i sh/ vdk20. syd
defaul t. syd

2. Replace the vdk20.syd file with your custom thesaurus. For
example:

cp custom syd
/ $SYBASE/ $SYBASE_FTS/ veri t y/ common/ engl i sh/ vdk20. syd

3. Restart your Full-Text Search engine; no configuration file
changes are required. The thesaurus is read from this location
when the Full-Text Search engine is started, not when a query is
executed.

Queries using the thesaurus operator will now use the custom
thesaurus.

Full-Text Search Specialty Data Store User's Guide 5-11

Creating Topics (Enhanced Version Only) Full-Text Search SDS Version 12.x

Creating Topics (Enhanced Version Only)

5-12

The section provides a condensed overview of Verity Topics. Topics
are discussed in detail in Chapter 9, “Verity Topics.”

A TOPICO is agrouping of information related to a concept or subject
area. With topic definitions in place, a user can perform searches on
the topic instead of having to write queries with complex syntax.

The user creates topics which can be combinations of words and
phrases, Verity operators and modifiers, and weight values. Then,
any user can query the topic.

Before you create topics, determine your application requirements,
and establish standards for naming conventions and for the location
of the following:

= OQOutline files — contains the topic definitions. Each topic has its
own outline file.

= Topic set directories — contains the compiled topic. Each topic has
its own topic set directory.

= Knowledge base map file — contains pointers to the topic set
directories.

To implement topics, perform the following steps:

1. Create one or more outline input files to define your topics (see
“Creating an Outline File” on page 5-13). Each outline file is used
to populate one topic set.

2. Create and populate a topic set directory, using the mktopics
utility (see “Creating a Topic Set Directory” on page 5-14). Each
topic set directory is populated based on one topic outline input
file.

3. Create a knowledge base map, specifying the locations of one or
more topic set directories (see “Creating a Knowledge Base
Map” on page 5-14)

s

Set the knowledge_base configuration parameter to point to the
location of the knowledge base map (see “Defining the Location
of the Knowledge Base Map” on page 5-15)

5. Execute queries against defined topics.

The following sample files illustrate the topics feature:

= sample_text_topics.otl is a sample outline file

= sample_text_topics.kbm is a sample knowledge base map

Setting Up Verity Functions

Full-Text Search SDS Version 12.x Creating Topics (Enhanced Version Only)

= sample_text_topics.sql issues queries using defined topics

These files are in the $SYBASE/$SYBASE_FTS/sample/scripts
directory.

Creating an Outline File

A topic outline file specifies all the combinations of words and
phrases, Verity operators and modifiers, and weight values that the
search engine uses when you issue a query using the topic. The
outline file is an ASCI|I text file in a structured format.

For example, the following outline file defines the topic
“saint-bernard”:

$control: 1

sai nt-bernard <accrue>
*0.80 "Saint Bernard"
*0.80 "St. Bernard"

* "wor ki ng dogs"

* "l arge dogs"

* "European breeds”

$$

When you issue a query specifying the topic “saint-bernard”, the
Full-Text Search engine:

= Returns documents that contain one or more of the following
phrases: “Saint Bernard,” “St. Bernard,” “working dogs,” “large
dogs,” and “European breeds”

= Scores documents that contain the phrase “Saint Bernard” or “St.
Bernard” higher than documents that contain the phrase
“working dogs, “large dogs,” or “European breeds”

This example is a very basic topic definition. An outline can
introduce more complex relationships by using:

= Multiple levels of subtopics
= Combinations of Verity operators (this example uses accrue)
= Verity modifiers

Full-Text Search Specialty Data Store User's Guide 5-13

Creating Topics (Enhanced Version Only)

Full-Text Search SDS Version 12.x

5-14

O Note

In Windows NT, you can use the graphical user interface of the Verity
Intelligent Classifier product to create topic outlines. It is available from
Verity. If you use Intelligent Classifier, it automatically creates a topic set
directory, and you can go to “Creating a Knowledge Base Map” on page
5-14 to continue setting up your topics.

Creating a Topic Set Directory

Use the mktopics utility to create and populate a topic set directory. It
is located in:

$SYBASE/$SYBASE_FTS/verity/bin

Run, or define an alias to run, mktopics from this bin directory. You can
create a topic set directory or directories in any work directory.

The mktopics syntax is:

nkt opics -outline outline_file.otl -topicset topic_set_directory

where:

= outline_file — is the name of the outline file you create in “Creating
an Outline File” on page 5-13

= topic_set_directory — is the name of the topic set directory you are
creating

For example, to execute the mktopics utility reading the
saint-bernard.otl file defined above, and directing output to a work
directory, use the syntax:

nkt opi cs -outline /usr/u/sybasel/topic_outlines/saint-bernard.otl
-topi cset /usr/u/sybase/topic_sets/saint-bernard_topic

Creating a Knowledge Base Map

A knowledge base map specifies the locations of one or more topic
set directories. Create an ASCII knowledge base map file that defines
the fully-qualified directory paths to your topic sets.

For example, the following knowledge base map file illustrates how
you can list multiple knowledge bases in the map. The first entry
identifies the topic set directory created with mktopics above.

Setting Up Verity Functions

Full-Text Search SDS Version 12.x Creating Topics (Enhanced Version Only)

$control :
kbases:

{

kb:

[kb-path
kb:

[kb-path

}

[usr/u/ sybase/topi c_sets/saint-bernard_topic

[usr/u/ sybase/ topi c_set s/ anot her _topic

Defining the Location of the Knowledge Base Map

Set the knowledge_base configuration parameter to point to the location
of the knowledge base map. For example:

sp_text_configure KRAZYKAT, 'know edge_base',
"/usr/u/ sybase/topi c_sets/sanpl e_text_topics. kbn

The knowledge_base configuration parameter is static, and you must
restart the Full-Text Search engine for the definition to take effect.

Executing Queries Against Defined Topics

You can now execute queries using the defined topic instead of a
complex query. For example, before you create the “saint-bernard”
topic, you would have to use the following syntax:

...where i.index_any = "<accrue> ([80] Sai nt
Bernard, [80]St. Bernard, working dogs, |arge
dogs, European breeds)"

to find documents that:

« Contain one or more of the following phrases: “Saint Bernard,”
“St. Bernard,” “working dogs,” “large dogs,” and “European
breeds”

= Score documents containing the phrase “Saint Bernard” or “St.
Bernard” higher than documents containing the phrase “working
dogs,” “large dogs,” or “European breeds”

After you create the topic “saint-bernard”, you can use this syntax:
...where i.index_any = "<topic>saint-bernard"
or:

...Wwhere i.index_any = "saint bernard"

Full-Text Search Specialty Data Store User's Guide 5-15

Creating Topics (Enhanced Version Only)

Full-Text Search SDS Version 12.x

5-16

O Note

If you enter a word in a query expression, the Full-Text Search engine tries
to match it with a topic name. If you enter a phrase in a query expression,
the Full-Text Search engine replaces spaces with hyphens (-), and then
tries to match it with a topic name. For example, the Full-Text Search engine
matches “saint bernard” with the topic “saint-bernard”.

See the sample_text_topics.sql file for examples of using topics in
queries.

Troubleshooting Topics

If the knowledge_base configuration parameter specifies a knowledge
base map file that does not exist, the Full-Text Search engine will not
be able to start a session with Verity, and the server will not start. If
the map file exists but contains invalid entries, Verity issues warning
messages at start-up time. You can correct errors by editing the
<textserver>.cfg file in the $SYBASE directory. You can correct path
information and change the line beginning: “knowledge_base="".

Setting Up Verity Functions

Writing Full-Text Search
Queries

This chapter describes the pseudo columns, search operators, and
modifiers that you can include in a full-text search. Topics include:

= Components of a Full-Text Search Query 6-1
= Pseudo Columns in the Index Table 6-2

< Full-Text Search Operators 6-8

« Operator Modifiers 6-19

Components of a Full-Text Search Query

To write a full-text search query, you enter the search parameters as
part of an Adaptive Server select statement. Then the Full-Text Search
engine processes the search. The select statement requires:

= A where clause that assigns a Verity language query to the
index_any pseudo column

= Pseudo columns to further define the parameters of the search
(optional)

= Ajoin between the IDENTITY column from the source table and
the id column from the index table

For example, to return the 10 documents from the copy column of the
blurbs table that have the most occurrences of the word ““software,”
enter:

select tl.score, t2.copy

fromi _blurbs t1, blurbs t2

where tl.id=t2.id

and t1.index_any = "<many> <word> software"
and t1. max_docs = 10

Adaptive Server passes the Verity query to the Full-Text Search
engine to process the search. For more information on how Adaptive
Server processes the query, see “How a Full-Text Search Works” on
page 2-5.

Default Behaviour

The default or simple syntax of a query to the full-Text Search engine
is treated broadly:

Full-Text Search Specialty Data Store User's Guide 6-1

Pseudo Columns in the Index Table Full-Text Search SDS Version 12.x

Searches are case sensitive.

The STEM operator applies to search words.

The MANY modifier is applied.

The ACCRUE operator is activated at the parent level.

A wn e

Pseudo Columns in the Index Table

6-2

Pseudo columns are columns in the index table that define the
parameters of the search and provide access to the results data. (For
more information about index tables, see “The Index Table” on page
2-3.) These columns are valid only in the context of a query; that is,
the information in the columns is valid only for the duration of the
query. If the query that follows contains a different set of parameters,
the pseudo columns contain a different set of values.

Each pseudo column in an index table describes a different search
attribute. For example, if you indicate the score column, the query
displays only the result set that falls within the parameters you
define. For example, the following query displays only the results
that have a score value greater than 90:

i ndex_t abl e_nane. score > 90

Other pseudo columns are used to retrieve data generated by Verity
for a particular document. Table 6-1 describes the pseudo columns
that are maintained by the Full-Text Search engine.

Table 6-1: Full-Text Search engine pseudo columns

Pseudo Column Descrintion Datatvpe Length
Name P yp (in Bytes)
cluster_number Enhanced Full-Text Search engine only. Contains the int 4

cluster that the row is part of. Clusters are

numbered starting with 1. You can use the

cluster_number column only in the select clause of a

query.
cluster_keywords Enhanced Full-Text Search engine only. Contains the varchar 255

keywords that Verity uses to build the cluster. You
can use cluster_keywords only in the select clause of a

query.

Uniquely identifies a document within a collection. numeric 6
Used to join with the IDENTITY column of the

source table. You can use id in the select clause or

where clause of a query.

Writing Full-Text Search Queries

Full-Text Search SDS Version 12.x Pseudo Columns in the Index Table

Table 6-1: Full-Text Search engine pseudo columns (continued)

Pseudo Column - Length
Description D -

Name escriptio atatype (in Bytes)

index_any Provides a Verity language query to the Full-Text varchar 255
Search engine. You can use index_any only in a where
clause.

max_docs Limits results to the first n documents, based on the int 4

default sort order. In a clustered result set, limits
results to the first n documents in each cluster. You
can use max_docs only in a where clause.

score

The normalized measure of correlation between int 4
search strings and indexed columns. The score

associated with a specific document has meaning

only in reference to the query used to retrieve the

document. You can use score in a select clause or a

where clause.

sort_by

Specifies the sort order in which to return the result varchar 35
set.

= The Standard Full-Text Search engine allows a
single sort specification in the sort_by column.

= The Enhanced Full-Text Search engine allows up
to 16 sort specifications in the sort_by column.

You can use sort_by only in a where clause.

summary

Selects summarization data. You can use the varchar 255
summary column only in the select clause of a query.

The following sections describe the functionality of the pseudo
columns.

Using the score Column to Relevance-Rank Search Results

Relevance ranking is the ability of the Full-Text Search engine to
assign the score parameter a value that indicates how well a
document satisfies the query. The score calculation depends on the
search operator used in the query (for more information, see “Using
the Verity Operators” on page 6-11). The closer the document
satisfies the query, the higher the score value is for that document.

For example, if you search for documents that contain the word
“rain,” a document with 12 occurrences of “rain” receives a higher
score value than a document with 6 occurrences of “rain.”

Full-Text Search Specialty Data Store User's Guide 6-3

Pseudo Columns in the Index Table Full-Text Search SDS Version 12.x

6-4

If you set score to a high value (such as 90) in your query, you limit the
result set to documents that have a score value greater than that
number.

O Note

Verity uses decimals for score values; Sybase uses whole numbers. For
example, if Verity reports a score value of .85, Sybase reports the same
value as 85

For example, the following query searches for documents that
contain the word “raconteur” or “Paris,” or both, and that have a
score of 90 or greater:

select tl.score, t2.copy

fromi _blurbs t1, blurbs t2

where tl.id=t2.id and t1l.score > 90

and t1l.index_any = "<accrue>(raconteur, Paris)"

score copy

(0 rows affected)

The query does not find any documents that contain the word
“raconteur” or “Paris” and that have a score greater than 90.
However, if the score value in the query is lowered to 39, you find that
one document in the blurbs table mentions the word “raconteur” or
“Paris”:

select tl.score, t2.copy

fromi_blurbs t1, blurbs t2

where tl.id=t2.id and t1l.score > 39

and t1.index_any = "<accrue>(raconteur, Paris)"

score copy

40 A chef’s chef and a raconteur’s raconteur, Reginald
Bl otchet-Halls calls London his second hone. "Th' pal ace

Using the sort_by Column to Specify a Sort Order

The sort order specifies the collating sequence used to order the data
in the result set. The default sort order is set by the sort_order
configuration parameter (for more information, see “Setting the
Default Sort Order” on page 7-11). Case insensitive sort order is not

Writing Full-Text Search Queries

Full-Text Search SDS Version 12.x Pseudo Columns in the Index Table

O Note

supported in the Standard Full-Text Search. It is supported in the
Enhanced version.

Use the sort_by pseudo column to return a result set with a sort order
other than the default. With the Standard Full-Text Search engine,
you can specify a single sort specification in the sort_by pseudo
column. With the Enhanced Full-Text Search engine, you can specify
up to 16 sort specifications in the sort_by pseudo column.

Table 6-2 lists the values for the sort_by pseudo column.

Table 6-2: Values for the sort_by pseudo column

Value Description

fts_score desc Returns a result set sorted by score in descending order.

fts_score asc Returns a result set sorted by score in ascending order.

fts_timestamp desc Returns a result set sorted by a timestamp in descending
order.

fts_timestamp asc Returns a result set sorted by a timestamp in ascending
order.

column_name desc Returns a result set sorted according to the descending

order of a column. column_name is the name of the
source table’s column.

column_name asc Returns a result set sorted according to the ascending
order of a column. column_name is the name of the
source table’s column.

fts_cluster asc Returns a clustered result set. Only available with the
Enhanced Full-Text Search engine. (See “Using Pseudo
Columns to Request Clustered Result Sets” on page 6-6
for more information.)

Before you can sort by specific columns, you must modify the style.vgw and
style.ufl files (see “Setting Up a Column to Use As a Sort Specification” on
page 5-4).

For example, the following query sorts the documents by timestamp
in ascending order:

Full-Text Search Specialty Data Store User's Guide 6-5

Pseudo Columns in the Index Table Full-Text Search SDS Version 12.x

6-6

sel ect t1.score, t2.copy

fromi_blurbs t1, blurbs t2

where tl.id=t2.id and t1.score > 90

and t1.index_any = "<accrue>(raconteur, Paris)"
and tl.sort_by = “fts_tinestanp asc”

Using the summary Column to Summarize Documents

Use the summary pseudo column to have queries return only
summaries of the documents that meet the search criteria, rather
than returning entire documents. The summary column is not
available by default; you must edit the style.prm file prior to creating
the text index to enable summarization. See “Enabling Query-By-
Example, Summarization, and Clustering” on page 5-1 for
information about enabling the summary column.

For example, the following query returns only summaries of
documents that include the words “Iranian” and “book” (in this
example, the style.prm file is configured to display 255 characters):

select tl1.score, t1.sumary

fromi_blurbs t1, blurbs t2

where tl.id=t2.id and t1.score > 70

and t1.index_any = "(lranian <and> book)"

score sunmmary

78 They asked me to write about nyself and ny book, so here
goes: | started a restaurant called “de Gustibus” with two
of nmy fri

(1 row affected)
The Full-Text Search engine supports summaries of up to 255 bytes.

For additional examples of queries using summarization, see the
sample script sample_text_queries.sgl in the
$SYBASE/$SYBASE_FTS/sample/scripts directory.

Using Pseudo Columns to Request Clustered Result Sets

The clustering function analyzes a result set and groups rows into
clusters so that the rows in each cluster are semantically more similar
to each other, on average, than they are to other rows in other
clusters. Ordering rows by subtopics can help you get a sense of the
major subject areas covered in the result set. Clustering is only
available with the Enhanced Full-Text Search Specialty Data Store.

Writing Full-Text Search Queries

Full-Text Search SDS Version 12.x Pseudo Columns in the Index Table

Returning a clustered result set can be significantly slower than
returning a nonclustered result set. If the response time of a query is
critical, use a nonclustered result set.

Preparing to Use Clustering

Before you request a clustered result set, you must build the text
index with the clustering function enabled (see “Enabling Query-By-
Example, Summarization, and Clustering” on page 5-1).

The Verity clustering algorithm attempts to group similar rows
together, based on the values of the following configuration
parameters:

« cluster_style
e cluster_max

* cluster_effort
« cluster_order

Use the sp_text_cluster system procedure to have a query use values
that are different from the default values of these configuration
parameters. (For values and how to set them for a query, see
“sp_text_cluster” on page A-20.)

Writing Queries Requesting a Clustered Result Set

To obtain a clustered result set, specify “fts_cluster asc” as the sort
specification in the sort_by pseudo column of the query. For example:

select tl.score, t2.copy
fromi _blurbs t1, blurbs t2
where tl.id=t2.id

and t1.index_any = "<many> <word> software"
and t1. max_docs = 10
and tl.sort_by = "fts_cluster asc"

Include any of the following pseudo columns in your query to return
additional clustering information:

< cluster_number — contains the number of the cluster the row
belongs to. Clusters are numbered starting with 1.

= cluster_keywords — contains the most common words found in the
cluster. The cluster_keywords column contains a null value for
each row that does not fit into any cluster.

Full-Text Search Specialty Data Store User's Guide 6-7

Full-Text Search Operators Full-Text Search SDS Version 12.x

= max_docs—limits the number of rows returned for each cluster. (In
a nonclustered query, the max_docs column limits the total
number of rows that are returned in a result set.)

= score — contains a value of 0 to 10000. The higher the score, the
closer the row is to the cluster center. A score of 0 indicates the
row does not fit into any cluster. (In a nonclustered query, the
score column can contain a value of 0 to 100.) The search engine
does not return results with a score of 0. Logically a score of 0
represents “no match” but the user never sees a score of 0.

See the sample script named sample_text_queries.sql in the
$SYBASE/$SYBASE_FTS/sample/scripts directory for examples of
SQL statements using clustering.

Full-Text Search Operators

The special search operators that you use to perform full-text
searches are part of the Verity search engine. Table 6-3 describes the
Verity search operators provided by the Full-Text Search engine.

Table 6-3: Verity search operators

Operator Name Description

accrue Selects documents that contain at least one of the search
elements specified in a query. The more search elements
there are, the higher the score will be.

and Selects documents that contain all the search elements
specified in a query.

complement Returns the complement of the score value (the score value
subtracted from 100).

in Selects documents that contain the search criteria in
the document zone specified.

like Selects documents that are similar to the sample
documents or passages specified in a query.

near Selects documents containing the specified search
elements, where the closer the search terms are to each
other in a document, the higher the document’s score.

near/n Selects documents containing two or more search terms
within n number of words of each other, where n is an
integer up to 1000. The closer the search terms are to each
other in a document, the higher the document’s score.

6-8 Writing Full-Text Search Queries

Full-Text Search SDS Version 12.x

Full-Text Search Operators

Table 6-3: Verity search operators (continued)

Operator Name

Description

or

Selects documents that contain at least one of the search
elements specified in a query.

paragraph

Selects documents that include all the search elements you
specify within the same paragraph.

phrase

Selects documents that include a particular phrase. A
phrase is a grouping of two or more words that occur in a
specific order.

product

Multiplies the score values for each of the items of the
search criteria.

sentence

Selects documents that include all the specified words in
the same sentence.

stem

Expands the search to include the specified word and its
variations.

sum

Adds the score values for all items in the search criteria.

thesaurus

Expands the search to include the specified word and its
synonymes.

topic

Specifies that the search term you enter is a topic.

wildcard

Matches wildcard characters included in search strings.
Certain characters indicate a wildcard specification
automatically.

word

Performs a basic word search, selecting documents that
include one or more instances of the specified word.

yesno

Converts all nonzero score values to 100.

Considerations When Using Verity Operators

Consider the following when you write full-text search queries:

= You must enclose the operators in angle brackets (<>) in the
guery. If they are not enclosed in angle brackets, the Full-Text
Search engine issues error messages similar to the following:

Full-Text Search Specialty Data Store User's Guide

6-9

Full-Text Search Operators Full-Text Search SDS Version 12.x

Msg 20200, Level 15, State O:

Server ‘' KRAZYKAT', Line 1

Error E1- 0111 (Query Builder): Syntax error in query string near
character 5

Msg 20200, Level 15, State O:

Server ‘' KRAZYKAT', Line 1

Error E1- 0114 (Query Builder): Error parsing query: word(tasmanian)
Msg 20101, Level 15, State O:

Server ‘' KRAZYKAT', Line 1

VdkSear chNew failed with vdk error (-40)

Msg 20101, Level 15, State O:

Server ‘' KRAZYKAT', Line 1

VdkSear chGetInfo failed with vdk error (-11)

score copy

(0 rows affected) score

< You must enclose the Verity language query in single quotes (') or
double quotes (). The Full-Text Search engine strips off the
outermost quotes before it sends the query to Verity. For example,
when you enter the query:

...Wwhere index_any = "'?own""
the Full-Text Search engine sends the following query to Verity:
' 2own’

< A query may be comprised of several “index_any” clauses anded
together in SQL. The right and value strings can be prefixed with
“<snnn>"", All such strings will be concatenated in Full-Text
Search in the order determined by the “nnn” values. The
“<snnn>" is removed. For instance:

wher e i ndex_any="<s001>hel | 0”
and i ndex_any="<s002> wor | d”

is the same as:
where index_any = “hello world”

This is a handy work-around for search strings that are greater
than 255 characters.

= Search terms entered in mixed case automatically become case
sensitive. Search terms entered in all uppercase or all lowercase
are not automatically case sensitive. For example, a query on
“Server” finds only the string “Server”. A query on “server” or
“SERVER?” finds the strings “Server”, “server”, and “SERVER”.

6-10 Writing Full-Text Search Queries

Full-Text Search SDS Version 12.x Full-Text Search Operators

= You can use alternative syntax for the query expressions shown
in Table 6-4.

Table 6-4: Alternative Verity syntax

Standard Query Expression Alternative Syntax

<MANY><WORD>string "string"

<MANY><STEM>string 'string’

When using the alternative syntax, remember that the Full-Text
Search engine strips off the outermost quotes before it sends the
query to Verity. For example, when you enter the query:

pl ay
the Full-Text Search engine sends the following query to Verity:
' pl ay’

This is the same as:

<MANY><STEM>pl ay

...where index_any =

Using the Verity Operators

The following sections describe how to use the \erity operators
shown in Table 6-3 on page 6-8.

accrue

The accrue operator selects documents that contain at least one of the
search items specified in the query. There must be two or more search
elements. Each result is relevance-ranked. For example, the
following query searches for the word “restaurant” or “deli” or both
in the copy column of the blurbs table:

select tl.score, t2.copy

fromi_blurbs t1, blurbs t2

where tl.id=t2.id and t1.score > 35

and t1.index_any = "<accrue>(restaurant, deli)"

and, or

The and and or operators select documents that contain the specified
search elements. Each result is relevance-ranked. The and operator
selects documents that contain all the elements specified in the query.

Full-Text Search Specialty Data Store User's Guide 6-11

Full-Text Search Operators Full-Text Search SDS Version 12.x

For example, the following query selects documents that contain
both “Iranian” and “business”:

sel ect t2.copy

fromi_blurbs t1, blurbs t2

where tl.id=t2.id

and t1.index_any = "(lranian <and> busi ness)"

The or operator selects the documents that contain any of the search
elements. For example, if the preceding query is rewritten to use the
or operator, the query selects documents that contain the word
“Iranian” or “business”:

sel ect t2.copy

fromi_blurbs t1, blurbs t2

where tl.id=t2.id

and t1.index_any = "(lranian <or> business)"

complement

The complement operator returns the complement of the score value for
a document; that is, it subtracts the value of score from 100 and
returns the result as the score value for the document.

in

The in operator selects documents that contain the specified search
element in one or more document zones. Document zones are
created for a text index in the following two scenarios:

< When you create an index on two or more columns using
sp_create_text_index, a document zone is created for each column in
the text index (for more information, refer to “Specifying
Multiple Columns When Creating a Text Index” on page 4-9). A
document zone is not created when you create a text index on a
single column. For example, if you specify the au_id and copy
columns of the blurbs table when you create the text index, you
can issue the following query:

select tl.score, t2.copy

fromi_blurbs t1, blurbs t2

where tl.id=t2.id and tl1.score > 35
and t1l.index_any = "gorilla <in> copy"

This returns rows that contain the word “gorilla” in the copy
column. However, if you specify only the copy column of the
blurbs table when you create the text index, this query does not
return any rows.

6-12 Writing Full-Text Search Queries

Full-Text Search SDS Version 12.x Full-Text Search Operators

= When you create an index that uses a filter, a document zone is
created for each tag in the document (for more information, see
“Using Filters on Text That Contains Tags” on page 5-6). You can
limit your search to a particular tag by specifying the tag hame
after the in operator. For example, to search for the word
“automotive” in a “title” tag in an HTML document, specify:

select tl.score, t2.copy

fromi_blurbs t1, blurbs t2

where tl.id=t2.id and t1.score > 35

and tl1.index_any = "autonotive <in> title"

Text indexes utilizing filters can contain only one column.

like

The like operator selects documents that are similar to the
document(s) or passages you provide. The search engine analyzes
the text to find the most important terms to use. If you specify
multiple samples, the search engine selects important terms that are
common across the samples. Each result is relevance-ranked.

The like operator accepts a single operand, called the query-by-
example (QBE) specification. The QBE specification can be either
literal text or document IDs. The document IDs are from the
IDENTITY column in the source table. For example, to select
documents that are similar to the document in the copy column in the
row with an IDENTITY of “2”, enter:

sel ect tl.score, t2.copy
fromi_blurbs t1, blurbs t2

where tl.id=t2.id and tl1.score > 35
and t1.index_any = '<like> ("{2}")’

Before using literal text in the QBE specification, you must
uncomment the following line in the style.prm file:

$defi ne DOC- FEATURES " TF"

For more information, see “Enabling Query-By-Example,
Summarization, and Clustering” on page 5-1.

See the sample script named sample_text_queries.sql in the
$SYBASE/$SYBASE_FTS/sample/scripts directory for examples of
SQL statements using QBE.

Full-Text Search Specialty Data Store User's Guide 6-13

Full-Text Search Operators Full-Text Search SDS Version 12.x

6-14

near, near/n

The near operator selects documents that contain the items specified
in the query and are near each other (“near” being a relative term).
The documents in which the search words appear closest to each
other receive the highest relevance-ranking.

The near/n operator specifies how far apart the items can be (n has a
maximum value of 1000). The following example selects documents
in which the words “raconteur” and “home” appear within 10 words
of each other:

sel ect t2.copy

fromi_blurbs t1, blurbs t2

where tl.id=t2.id

and tl1.index_any = "<near/10>(raconteur, hone)"

or

See “and, or” on page 6-11.

phrase

The phrase operator selects documents that contain a particular
phrase (a group of two or more items that occur in a specific order).
Each result is relevance-ranked. The following example selects the
documents that contain the phrase “gorilla’s head”:

select tl1.score, t2.copy

fromi_blurbs t1, blurbs t2

where tl.id=t2.id and t1.score > 50

and t1.index_any = "<phrase>(gorilla’s head)"

paragraph

The paragraph operator selects documents in which the specified
search elements appear in the same paragraph. The closer the words
are to each other in a paragraph, the higher the score the document
receives in relevance-ranking. The following example searches for
documents in which the words “text” and “search” occur within the
same paragraph:

select tl.score, t2.copy

fromi_blurbs t1, blurbs t2

where tl.id=t2.id and t1.score > 50

and t1.index_any = "<many><paragraph>(text, search)"

Writing Full-Text Search Queries

Full-Text Search SDS Version 12.x Full-Text Search Operators

product

The product operator multiplies the score value for the documents for
each of the search elements. To arrive at a document’s score, the Full-
Text Search engine calculates a score for each search element and
multiplies the scores. For example:

select tl.score, t2.copy

fromi _blurbs t1, blurbs t2

where tl.id=t2.id and t1.score > 50

and tl1.index_any = "<product>(cat, created)"

The score value for each search element is 78; however, because the
score values for the items are multiplied, the document has a score
value of 61 (.78 x.78 =.61(100) = 61).

sentence

The sentence operator selects documents in which the specified search
elements appear in the same sentence. The closer the words are to
each other in a sentence, the higher the score the document receives
in relevance-ranking. The following example searches for
documents in which the words “tax” and “service” occur within the
same sentence:

select tl1.score, t2.copy

fromi_blurbs t1, blurbs t2

where tl.id=t2.id and t1l.score > 50

and t1.index_any = "<many><sentence>(tax, service)"

stem

The stem operator searches for documents containing the specified
word and its variations. For example, if you specify the word “cook,”
the Full-Text Search engine produces documents that contain
“cooked,” “cooking,” “cooks,” and so on. To relevance-rank the
result set, include the many modifier in the query (see “Operator
Modifiers” on page 6-19).

The following query uses the stem operator to find documents that
contain variations of the word “create,” that is, words that contain
the word “create” as a stem. Notice that even though the first
document contains a word in which “create” is not a perfect stem
(“creative”), the document is still selected:

Full-Text Search Specialty Data Store User's Guide 6-15

Full-Text Search Operators Full-Text Search SDS Version 12.x

sel ect tl1.score, t2.copy

fromi_blurbs t1, blurbs t2

where tl1.id=t2.id and t1l.score > 10
and t1.index_any = "<many><stenpcreate"

score copy

78 Anne Ringer ran away fromthe circus as a child. A
university creative witing professor and her fanily

78 If Chastity Locksley didn't exist, this troubled world
woul d have created her! Not only did she naster the nystic

sum

The sum operator totals the score values for each search element, up to
a maximum of 100. To arrive at a document’s score, the Full-Text
Search engine calculates a score for each search element and totals
those scores.

thesaurus

The thesaurus operator searches for documents containing a synonym
for a search element. For example, you might perform a search using
the word “dog,” looking for documents that use any of its synonyms
(“canine,” “pooch,” “pup,” “watchdog,” and so on). Each result is
relevance-ranked.

The Full-Text Search engine supplies a default thesaurus. With the
Enhanced Full-Text Search engine, you can create a custom
thesaurus. For more information, see “Creating a Custom Thesaurus
(Enhanced Version Only)” on page 5-8.

The following example uses the thesaurus operator to find a result set
that contains synonyms for the word “crave.” The first document is
selected because it contains the word “want”; the second, because it
contains the word “hunger”:

6-16 Writing Full-Text Search Queries

Full-Text Search SDS Version 12.x Full-Text Search Operators

sel ect t2.copy

fromi_blurbs t1, blurbs t2
where tl.id=t2.id
and t1.index_any = "<thesaurus>(crave)"

score copy

78 They asked me to write about nyself and ny book, so here
goes: | started a restaurant called “de CQustibus” with two
of restaurant over another, when what they really want is a
78 A chef’s chef and a raconteur’s raconteur, Reginald
Bl otchet-Halls calls London his second hone. "Th' pal ace
his equal skill in satisfying our perpetual hunger for
topic (Enhanced Version Only)
The topic operator selects documents that meet the search criteria
defined by the specified topic. For more information, see “Creating
Topics (Enhanced Version Only)” on page 5-12. For example, use the
following syntax to find documents that meet the criteria defined by
the topic “engineering”:
sel ect t2.copy
fromi_blurbs t1, blurbs t2
where tl.id=t2.id
and tl1.index_any = "<topic>(engineering)"
wildcard
The wildcard operator allows you to substitute wildcard characters for
part of the item for which you are searching. Table 6-5 describes the
wildcard characters and their attributes.
Table 6-5: Full-Text Search engine wildcard characters
Character Function Syntax Locates
? Specifies one alphanumeric character. You do not ~ '?an’ “ran,” “pan,”
need to include the wildcard operator when you “can,” and
include the question mark in your query. The “ban”

question mark is ignored in a set ([]) or in an
alternative pattern ({}).

Full-Text Search Specialty Data Store User's Guide 6-17

Full-Text Search Operators

Full-Text Search SDS Version 12.x

Table 6-5: Full-Text Search engine wildcard characters

Character Function Syntax Locates

* Specifies zero or more of any alphanumeric ‘corp* “corporate,”
character. You do not need to include the wildcard “corporation,”
operator when you include the asterisk in your “corporal,”and
query; you should not use the asterisk to specify “corpulent”
the first character of a wildcard-character string.

The asterisk is ignored in a set ([]) or in an
alternative pattern ({}).

[1 Specifies any single character in a set. If a word <wildcard> ‘clauo]t’ “‘cat,” “cut,”
includes a set, you must enclose the word in and “cot”
backquotes (* *). Also, there can be no spaces in a
set.

{} Specifies one of each pattern separated by a <wildcard> “banks,”
comma. If a word includes a pattern, you must ‘bank{s,er,ing}' “banker,” and
enclose the word in backquotes (* *). Also, there “banking”
can be no spaces in a set.

A Specifies one of any character not included in a <wildcard> Excludes
set. The caret (") must be the first character after ‘st["oa]ck" “stock” and
the left bracket ([) that introduces a set. “stack,” but

locates “stick”
and “stuck”

Specifies a range of characters in a set.

<wildcard> ‘c[a-r]t‘

Includes every
three-letter
word from
“cat” to “crt”

6-18

To relevance-rank the result set, include the many modifier in the
query (see “Operator Modifiers” on page 6-19).

For example, the following query searches for documents that
include variations of the word “slingshot™:

sel ect t2.copy

fromi_blurbs t1, blurbs t2
where tl.id=t2.id

and t1l.index_any = '"slingshot*"'
scor e copy

100 Al bert

another kind of circus trunk played a nore inportant

gorilla. *“Slingshotting”

Writing Full-Text Search Queries

Ri nger was born in a trunk to circus parents, but

role

hinself fromthe ring ropes,

Full-Text Search SDS Version 12.x Operator Modifiers

Operator Modifiers

word

The word operator searches for documents containing the specified
word. To relevance-rank the result set, include the many operator in
the query. The following example searches the blurbs table for
documents containing the word “palates™:

select tl.score, t2.copy

fromi _blurbs t1, blurbs t2

where tl.id=t2.id and t1.score > 50

and t1.index_any = "<many><word>(pal ates)"

yesno

The yesno operator converts all nonzero score values to 100. For
example, if the score values for five documents are 86, 45, 89, 89, and
100, each of those documents is returned with a score value of 100.
score values of 0 are not changed. The yesno operator is helpful for
ensuring that all documents containing the search criteria are
returned in the result set, regardless of the sort order.

The Verity query language includes modifiers that you can use with
the operators to refine a search. The modifiers are described in Table
6-6.

Table 6-6: Verity operator modifiers

Modifier

Works with

Name Description These Operators Example
case Performs case-sensitive wildcard <case><wor d>(Net)
searches. If you enter word
search terms in mixed
case, the search is
automatically case
sensitive.
many Counts the number of paragraph <many><stenk(wite)
times that a word, phrase
stemmed word, or phrase sentence
occurs in a document. stem
Relevance-ranks the word
document according to wildcard
its density.

Full-Text Search Specialty Data Store User's Guide 6-19

Operator Modifiers

Full-Text Search SDS Version 12.x

Table 6-6: Verity operator modifiers (continued)

Modifier

Works with

Name Description These Operators Example

not Excludes documents that and cat <and><not >el ephant
contain the items for or
which the query is
searching.

order Specifies that the itemsin near/n Simple syntax:
the documents occur in paragraph ti dbi t s<or der ><par agr aph>ki ng
the same order in which sentence . .
they appear in the query. Explicit syntax:

' <or der ><par agr aph>(ti dbi ts, ki ng)
Always place the order
modifier just before the
operator
6-20 Writing Full-Text Search Queries

System Administration

This chapter describes system administration issues for both the
Standard and Enhanced versions of the Full-Text Search engine.
Topics include:

= Starting the Full-Text Search Engine on UNIX 7-1

= Starting the Full-Text Search Engine on Windows NT 7-3
= Shutting Down the Full-Text Search Engine 7-4

< Modifying the Configuration Parameters 7-5

= Backup and Recovery for the Standard Full-Text Search Engine
7-15

= Backup and Recovery for the Enhanced Full-Text Search Engine
7-18

Starting the Full-Text Search Engine on UNIX

Use the startserver utility to start the Full-Text Search engine on UNIX.
The startserver utility is included in the install directory of Adaptive
Server. For example, to start a Full-Text Search engine named
KRAZYKAT, enter:

startserver -f
$SYBASE/ $SYBASE_FTS/ i nst al | / RUN_KRAZYKAT

where the -f flag specifies the relative path to the runserver file. After
you issue the command, the Full-Text Search engine issues a series of
messages describing the settings of the configuration parameters.

Creating the Runserver File

The runserver file contains start-up commands for the Full-Text
Search engine. The runserver file can include the flags shown in
Table 7-1.

Table 7-1: Definition of flags in the runserver file

Flag Definition

-Sserver_name Specifies the name of the Full-Text Search engine and is
used to locate the configuration file and the network
connection information in the interfaces file.

Full-Text Search Specialty Data Store User's Guide 7-1

Starting the Full-Text Search Engine on UNIX Full-Text Search SDS Version 12.x

7-2

Table 7-1: Definition of flags in the runserver file (continued)

Flag Definition

-t Causes the Full-Text Search engine to write start-up
messages to standard error.

-lerrorlog_path Specifies the path to the error log file.

-iinterfaces_file_path ~ Specifies the path to the interfaces file.

A sample runserver file is copied to the
$SYBASE/$SYBASE_FTS/install directory during installation. Make a
copy of this file, renaming it RUN_server_name, where server_name is
the name of the Full-Text Search engine. You must include the correct
path environment variable for your platform in the runserver file.
Table 7-2 shows the path environment variable to use for each
platform.

Table 7-2: Path environment variable for the runserver file

Platform Environment Variable
RS/6000 AIX LIBPATH

Sun Solaris LD_LIBRARY_PATH
HP 9000(800) SHLIB_PATH

Digital UNIX LD_LIBRARY_PATH

For example, the runserver file on Sun Solaris for a Full-Text Search
engine named KRAZYKAT would be RUN_KRAZYKAT and would
be similar to:

#! / bi n/ sh
#

LD_LI BRARY_PATH="$SYBASE/ $SYBASE_FTS/ | i b: $LD_LI BRAR
Y_PATH'
export LD LI BRARY_PATH

$SYBASE/ bi n/ t xt svr - SKRAZYKAT

The start-up command in the runserver file must consist of a single
line and cannot include a return. If you have to carry the contents of
the file over to a second or third line, include a backslash (\) for aline
break.

System Administration

Full-Text Search SDS Version 12.x Starting the Full-Text Search Engine on Windows NT

Starting the Full-Text Search Engine on Windows NT

You can start the Full-Text Search engine from Sybase Central(l, as a
service, or from the command line:

< From Sybase Central — see your Sybase Central documentation
for information about starting servers.

< Asaservice — see “Starting the Full-Text Search Engine As a
Service” below.

= From the command line — use the following syntax:

USYBASEN USYBASE FTS% bi n\t xt svr. exe - Sserver _nhanme
[-t] [-i “SYBASEYpath_to_sql.ini_file]
[-1 “SYBASEYpat h_t o_errorl og]

where:

- -Sis the name of the Full-Text Search engine you are starting
- -tdirects start-up messages to standard error

- -iis the path to the sql.ini file

- -lis the path to the error log

For example, to start a Full-Text Search engine named KRAZYKAT
on NT using the default sql.ini and error log files, and using -t to trace
start-up messages, enter:

YSYBASE% ¥SYBASE_FTS% bi n\ t xt svr. exe - SKRAZYKAT -t

The Full-Text Search engine is up and running when you see the
start-up complete message.

Starting the Full-Text Search Engine As a Service

Use the instsvr utility in Sybase Central to add the Full-Text Search
engine to the list of items you can start and stop with the Services
utility. instsvr is located in the %SYBASE%\%SYBASE_FTS%\bin
directory.

The instsvr utility uses the following syntax:

i nstsvr.exe service_nanme %SYBASEW ¥SYBASE FTS% bi n\t xt svr. exe
"startup_paraneters”

where:

= service_name is the name of the Full-Text Search engine you are
adding as a service. With Sybase Central, Sybase recommends

Full-Text Search Specialty Data Store User's Guide 7-3

Shutting Down the Full-Text Search Engine Full-Text Search SDS Version 12.x

you use a server name with the extension “_TS” (for example,
KRAZYKAT_TS).

= startup_parameters are any parameters you want used at start-up.

For example, to install a Full-Text Search engine nhamed
KRAZYKAT _TS as a service, enter:

i nstsvr. exe KRAZYKAT TS %SYBASE% sds\t ext\bi n\txtsvr. exe
" - SKRAZYKAT TS -t"

O Note

If you need to include more than one parameter (for example, -i), you must
include all the parameters in one set of double quotes.

To configure Sybase Central to start and stop your Full-Text Search
engine, you must provide a service name that begins with
“SYBTXT _server_name”, where server_name is the name of the Full-
Text Search engine listed in the interfaces file. For example, if the
name in the interfaces file is KRAZYKAT_TS, run the following
instsvr command to create a service that can be managed by Sybase
Central:

i nstsvr SYBTXT_KRAZYKAT_TS %SYBASE% %SYBASE_FTS% bi n\ t xt svr. exe
"- SKRAZYKAT_TS -t"

Shutting Down the Full-Text Search Engine

Use the following command to shut down the Full-Text Search
engine from Adaptive Server:

server _nane. .. sp_shut down

where server_name is the name of the Full-Text Search engine you are
shutting down.

For example, to shutdown a Full-Text Search engine named
KRAZYKAT, enter:

KRAZYKAT. . . sp_shut down

7-4 System Administration

Full-Text Search SDS Version 12.x

Modifying the Configuration Parameters

Modifying the Configuration Parameters

Each Full-Text Search engine has configuration parameters with

default values, as shown in Table 7-3.

Table 7-3: Configuration parameters

Parameter

Description

Default Value

batch_size

Determines the size of the batches
sent to the Full-Text Search engine.

500

batch_blocksize

When enabled, the text server reads
data in smaller chunks. This
parameter instructs the text server to
retrieve n number of rows at a time.
Should be set to 0 (disabled) to
65535.

max_indexes

The maximum number of text
indexes that will be created in the
Full-Text Search engine.

126

max_stacksize

Size (in kilobytes) of the stack
allocated for client threads.

34,816

max_threads

Maximum number of threads
available for the Full-Text Search
engine.

50

max_packetsize

Packet size sent between the Full-
Text Search engine and the Adaptive
Server.

2048

max_sessions

Maximum number of sessions for
the Full-Text Search engine.

100

min_sessions

Minimum number of sessions for the
Full-Text Search engine.

10

language

Language used by the Full-Text
Search engine.

us_english

charset

Character set used by the Full-Text
Search engine.

iso_1

vdkCharset

Character set used by Verity search
engine.

850

vdkLanguage

Language used by Verity search
engine.

english

Full-Text Search Specialty Data Store User's Guide 7-5

Modifying the Configuration Parameters

Full-Text Search SDS Version 12.x

7-6

Table 7-3: Configuration parameters (continued)

Parameter Description Default Value
vdkHome Verity directory. UNIX:
$SYBASE/$SYBASE_FTS/verity
Windows NT:
%SYBASE%\%SYBASE_FTS%\
verity
collDir Storage location of the Full-Text UNIX:
Search engine’s collection. $SYBASE/$SYBASE_FTS/
collections
Windows NT:
%SYBASE%\%SYBASE_FTS%\
collections
defaultDb Name of the Full-Text Search engine text_db
database that stores text index
metadata.
interfaces Full path to the directory in which UNIX:
the interfaces file used by the Full- $SYBASE/interfaces
Text Search engine is located. Windows NT:
%SYBASE%\ini\sql.ini
sort_order Default sort order. 0
errorLog Full path name to the error log file. The directory in which you start
Full-Text Search engine
traceflags String containing numeric identifiers 0
used to generate diagnostic
information.
srv_traceflags String containing numeric flag 0

identifiers used to generate Open
Server diagnostic information.

The Enhanced Full-Text Search engine has additional configuration
parameters as shown in Table 7-4:

Table 7-4: Configuration parameters for Enhanced version only

Parameter Description Default Value
cluster_style Clustering style to use. Fixed
cluster_max Maximum number of clusters to 0

generate when cluster_style is set to
Fixed.

System Administration

Full-Text Search SDS Version 12.x Modifying the Configuration Parameters

Table 7-4: Configuration parameters for Enhanced version only (continued)

Parameter

Description Default Value

cluster_effort

Amount of effort the Full-Text Default
Search engine should expend on
finding a good cluster.

cluster_order

The order to return clusters and 0
rows within a cluster.

auto_online Specifies whether to bring indexes 0
online automatically when the Full-
Text Search engine is started. 0
indicates online is not automatic; 1
indicates automatic.
backDir The default location for the UNIX:
placement of text index backup files. $SYBASE/$SYBASE_FTS/backup
Windows NT:
%SYBASE%\%SYBASE_FTS%\
backup
knowledge_base The location of a knowledge base null

map for implementing the Verity
topics feature.

nocase

Sets the case-sensitivity of the Full- 0
Text Search engine. If you are using a
case-sensitive sort order in

Adaptive Server, set to 0. If you are
using a case-insensitive sort order,

setto 1.

A sample configuration file that includes all of these parameters is
copied to your installation directory during installation. The sample
configuration file is named textsvr.cfg. The entire sample
configuration file is listed in Appendix B, “Sample Files.”

Modifying Values in the Standard Version

With Standard Full-Text Search Specialty Data Store, you use a
configuration file to change the default values. The configuration file
is named server_name.cfg and is in the $SYBASE directory.
server_name is the name of the Full-Text Search engine.

For UNIX, the srvbuild utility creates the configuration file when it
builds the Full-Text Search engine.

For Windows NT, you manually create the configuration file by
copying a sample configuration file with default values.

Full-Text Search Specialty Data Store User's Guide 7-7

Modifying the Configuration Parameters Full-Text Search SDS Version 12.x

7-8

To modify the default values, use a text editor to edit the
configuration file. Uncomment the line that contains the
configuration parameter you are modifying. You must restart the
Full-Text Search engine for the new values to take effect.

Modifying Values in the Enhanced Version

O Note

With Enhanced Full-Text Search Specialty Data Store, you can use the
sp_text_configure system procedure to change the value of a
configuration parameter. The syntax is:

sp_text_configure server_nane, config_nane,
config_val ue

where:
= server_name is the name of the Full-Text Search engine
= config_name is the name of the configuration parameter

= config_value is the value you assign to the configuration
parameter

For more information, see “sp_text_configure” on page A-23.

You can also modify the value of a configuration parameter by editing a
configuration file as described in “Modifying Values in the Standard
Version” on page 7-7.

Available Configuration Paramters

The following table provides a list of available configuration
parameters with valid limits:

Table 7-5: Limits to Configuration parameters

Parameter Values Static/Dynamic
batch_size 0- MAX_INT Dynamic
batch_blocksize 0 - 65535 Dynamic
max_indexes 0- MAX_INT Static
max_stacksize 0- MAX_INT Static
max_threads 0- MAX_INT Static

System Administration

Full-Text Search SDS Version 12.x

Modifying the Configuration Parameters

Table 7-5: Limits to Configuration parameters (continued)

Parameter Values Static/Dynamic
max_packetsize 0- MAX_INT Static
max_sessions 0- MAX_INT Static
min_sessions 0 - max_sessions Static
language French, Spanish German, English Static
charset ascii_8, cp037, cp1047, cp437, cp500, Static

cp850, deckaniji, eucjis, iso_1, mac,

romans, sjis, utf8
vdkCharset 850, 437, 1252, macl (Just the ones Static

listed in the manual)
vdkLanguage French, Spanish German, English Static
vdkHome A string < 255 chars Static
colIDir A string < 255 chars Static
default_Db A string < 32 chars Static
interfaces A string < 255 chars Static
sort_order 0,123 Dynamic
errorLog A string < 255 chars Static
traceflags A string with comma delimited Static

numbers ranging anywhere from 1

to 15.
srv_traceflags A string with comma delimited Static

numbers ranging anywhere from 1

to8
cluster_style Coarse, Medium, Fine, Fixed Dynamic
cluster_max 0- MAX_INT Dynamic
cluster_effort Low, Medium, High, Default Dynamic
cluster_order Oor1l Dynamic
auto_online Oorl Static
backCmd A string < 255 chars Dynamic
restoreCmd A string < 255 chars Dynamic
backDir A string < 255 chars Static
knowledge_base A string < 255 chars Static
nocase Oorl Dynamic

Full-Text Search Specialty Data Store User's Guide 7-9

Modifying the Configuration Parameters Full-Text Search SDS Version 12.x

Setting the Default Language

The default language for Verity is set with the vdkLanguage
configuration parameter. By default, vdkLanguage is set to “english”.
You can configure Verity to use a different default language. Table 7-
6 lists the locales supported by Sybase.

Table 7-6: vdkLanguage configuration parameters

Language Default Locale Name

English english
German german
French french

Additional language adapters are available in the
$SYBASE/$SYBASE_FTS/verity/common directory; however, the Full-
Text Search engine displays messages only in the languages shown
in Table 7-6.

The language parameter is the language the Full-Text Search engine
displays its error messages and Open Server and Open Client error
messages. Set the language parameter to the Adaptive Server
language.

For example, with the Standard Full-Text Search engine, to change
the Verity language to Spanish in a server named KRAZYKAT,
include the following line in the configuration file:

vdkLanguage = spani sh
With the Enhanced Full-Text Search engine, run the following:
sp_text_configure KRAZYKAT, 'vdkLanguage', 'spanish’

For more information about the Verity languages, see the Verity Web
site:

http://www.verity.com

Setting the Default Character Set

The default character set for Verity is set with the vdkCharset
parameter in the configuration file. The files used for the Verity

7-10 System Administration

Full-Text Search SDS Version 12.x Modifying the Configuration Parameters

character sets are in $SYBASE/$SYBASE_FTS/verity/common. Table 7-
7 describes the character sets you can use with Verity.

Table 7-7: Verity character sets

Character Set Description

850 Default
437 IBM PC character set
1252 Windows code page for Western

European languages

macl Macintosh roman

The default character set for the Full-Text Search engine is set with
the charset parameter. Set the charset parameter to the Adaptive Server
character set.

For example, with the Standard Full-Text Search engine, to change
the Verity character set to IBM PC in a server named KRAZYKAT,
include the following line in the configuration file:

vdkCharset = 437
With the Enhanced Full-Text Search engine, run the following:
sp_text_configure KRAZYKAT, 'vdkCharset', '437'

Setting the Default Sort Order

By default, the Full-Text Search engine sorts the result set by the score
pseudo column in descending order (the higher scores appear first).
To change the default sort order, set the sort_order configuration
parameter to one of the values in Table 7-8.

Table 7-8: Sort order values for the configuration file

Value Description

0 Returns result sets sorted by the score pseudo column in
descending order. The default value.

1 Returns result sets sorted by the score pseudo column in
ascending order.

2 Returns result sets sorted by a timestamp in descending
order.

Full-Text Search Specialty Data Store User's Guide 7-11

Modifying the Configuration Parameters Full-Text Search SDS Version 12.x

Table 7-8: Sort order values for the configuration file (continued)

Value Description

3 Returns result sets sorted by a timestamp in ascending
order.

For example, with the Standard Full-Text Search engine, to change
the default sort order to sort by descending timestamp in a server
named KRAZYKAT, include the following line in the configuration
file:

sort_order = 2
With the Enhanced Full-Text Search engine, enter:
sp_text_configure KRAZYKAT, 'sort_order', '2'

When you sort a result set by descending timestamp (value 2 in Table
7-8), the Full-Text Search engine returns the newest documents first.
The newest documents are those that were inserted or updated most
recently. When results are sorted by ascending timestamp (value 3in
Table 7-8), the Full-Text Search engine returns the oldest documents
first.

Setting the default sort order is especially important if your query
uses the max_docs pseudo column. The max_docs pseudo column
limits the number of rows of the result set to the first n rows, ordered
by the sort order. If you set max_docs to a number smaller than the
size of the result set, the sort order you select could exclude the rows
that contain the information for which you are searching.

For example, if you sort by ascending timestamp, the latest
document added to the table appears last in the result set. If the
entire result set consists of 11 documents, and you set max_docs to 10,
the latest document does not appear in the result set. However, if you
sort by descending timestamp, the latest document appears first in
the result set.

Setting Trace Flags

The traceflags parameter enable the logging of certain events when
they occur within the Full-Text Search engine. Each trace flag is

7-12 System Administration

Full-Text Search SDS Version 12.x Modifying the Configuration Parameters

uniquely identified by a number. Trace flags are described in Table 7-
9.

Table 7-9: Full-Text Search engine trace flags

Trace -
Description

Flag

1 Traces connects, disconnects, and attention events from
Adaptive Server.

2 Traces language events. Traces the SQL statement that
Adaptive Server sent to the Full-Text Search engine.

3 Traces RPC events.

4 Traces cursor events. Traces the SQL statement sent to
the Full-Text Search engine by Adaptive Server.

5 Writes the errors that display to the log.

6 Traces information about text indexes. Writes the search
string being passed to Verity to the log, and writes the
number of records that the search returns to the log.

7 Traces done packets.

8 Traces calls to the interface between the Full-Text Search
engine and the Verity API.

9 Traces SQL parsing.

10 Traces Verity processing.

11 Disables Verity collection optimization.

12 Disables sp_statistics from returning information.

13 Traces backup operations. Available only with Enhanced
Full-Text Search Specialty Data Store.

14 Logs Verity status and timing information.

15 Generates ngram index information for collections.
ngrams increase the speed of wildcard searches. This
trace flag is required for wildcard searches against data
in unicode format.

30 This traceflag enables the Verity MaxClean feature that

removes out of date collection files. It should only be
used during maintenance since it could take extra time
and interfere with normal usage. It is enabled in
conjuntion with sp_optimize_text_index.

Full-Text Search Specialty Data Store User's Guide 7-13

Modifying the Configuration Parameters Full-Text Search SDS Version 12.x

7-14

You can enable and disable trace flags interactively, using the remote
procedure calls (RPCs) sp_traceon and sp_traceoff in the Full-Text
Search engine.

To execute sp_traceon, use the following syntax:
textserver...sp_traceon 1,2,3,4
where textserver is the name of the Full-Text Search engine.

The traceflags will stay active until the session is terminated or until
the sp_traceoff RPC is executed using the specific traceflag. To set a
traceflag permanently, either set it in the config file or use the
sp_text_configure command.

Setting Open Server Trace Flags

Use the srv_traceflags parameter to turn on trace flags to log Open
Server diagnostic information. Open Server trace flags are described
in Table 7-10.

Table 7-10: Open Server trace flags

Trace

Flag Description

Traces TDS headers.

Traces TDS data.

Traces attention events.

Traces message queues.

Traces TDS tokens.

Traces Open Server events.

Traces deferred event queues.

O N 0|~ W|DN|FE

Traces network requests.

For example, with the Standard Full-Text Search engine, to trace
attention events on the server named KRAZYKAT, include the
following line in the configuration file:

srv_traceflags = 3
With the Enhanced Full-Text Search engine, run the following:
sp_text_configure KRAZYKAT, 'srv_traceflags', '3

System Administration

Full-Text Search SDS Version 12.x Backup and Recovery for the Standard Full-Text Search Engine

Setting Case Sensitivity

By default, the Full-Text Search engine is case sensitive. This means
you must enter identifiers in the same case or they are not
recognized. For example, if you have a table named blurbs
(lowercase), you cannot issue an sp_create_text_index command that
specifies the table name BLURBS. You must issue a command that

uses the same case for the table name argument:
sp_create_text_index "KRAZYKAT", "i_blurbs", "blurbs", "", "copy"

With Enhanced Full-Text Search engine, use the nocase parameter to
set the case sensitivity of the Full-Text Search engine. 0 indicates case
sensitive; 1 indicates case insensitive. Set the nocase parameter to the
sort order case sensitivity in Adaptive Server.

For example:
sp_text_configure KRAZYKAT, 'nocase', '1'
changes the KRAZYKAT server to case insensitive.

O Note

The nocase parameter does not affect the case sensitivity of the Verity
query. For information on Verity case sensitivity, see “Considerations When
Using Verity Operators” on page 6-9.

Backup and Recovery for the Standard Full-Text Search Engine

The Adaptive Server user database and the Verity collections are
physically separate. Backing up your user database does not back up
the Verity collections, and restoring your database from a backup
does not restore your Verity collections. The backup and recovery
procedures described in Chapter 21, “Backing Up and Restoring
User Databases,” of the System Administration Guide apply only to the
user database and text_db database in Adaptive Server.

Make sure you follow the recommended schedule for backing up
your databases that is described in Chapter 20, “Developing a
Backup and Recovery Plan,” of the System Administration Guide.
Sybase recommends that when you back up a user database with text
indexes, you also back up:

« The text_db database
= The text indexes

Full-Text Search Specialty Data Store User's Guide 7-15

Backup and Recovery for the Standard Full-Text Search Engine

Full-Text Search SDS Version 12.x

7-16

O Note

A regular backup schedule ensures the integrity of the text indexes,
the Adaptive Server data, and the text_events table, all of which are
integral to recovering your text indexes without having to drop and
re-create them.

You do not have to back up the user database and text indexes at the same
time to recover the text indexes. However, you must restore the user
database before you restore the text index. Doing so restores the
text_events table, which the sp_redo_text_events system procedure uses to
bring the text indexes in sync with the user database.

If you have Enhanced Full-Text Search Specialty Data Store, use the
automated process described in “Backup and Recovery for the
Enhanced Full-Text Search Engine” on page 7-18.

Backing Up Verity Collections

Follow these steps to back up your Verity collections:

1. Shut down the Full-Text Search engine:
server_nane. . .sp_shut down

2. Back up the files. By default, the collections are located in:
$SYBASE/$SYBASE_FTS/collections

Each collection name consists of the database name, owner
name, and index name in the format db.owner.index. For example,
if you create a text index called i_blurbs on the pubs2 database,
the full path to those files would be similar to:

$SYBASE/$SYBASE_FTS/collections/pubs2.dbo.i_blurbs
- In UNIX, back up the files by using the tar or cpio utility

- In Windows NT, use a compression utility such as PKZIP to
back up the files

3. For future reference, make a note of the time of the backup in a
permanent location.

4. Back up the user database and the text_db database, using the
dump database command. For more information on the dump
database command, see the Adaptive Server Reference Manual.

System Administration

Full-Text Search SDS Version 12.x Backup and Recovery for the Standard Full-Text Search Engine

Restart the Full-Text Search engine. For instructions, see
“Starting the Full-Text Search Engine on UNIX” on page 7-1 or
“Starting the Full-Text Search Engine on Windows NT” on page
7-3.

Restoring Verity Collections and Text Indexes from Backup

As Database Administrator, follow these steps to restore your Verity
collections:

1.

Restore the Adaptive Server user database and text_db database.
This returns the source tables, metadata, and text_events table to
a consistent and predictable state. See Chapter 21, “Backing Up
and Restoring User Databases,” in the System Administration
Guide for more information.

Shut down the Full-Text Search engine:
server _nane. .. sp_shut down

Restore your collections from the backup files created in step 2 in
“Backing Up Verity Collections” on page 7-16.

Restart the Full-Text Search engine. For instructions, see
“Starting the Full-Text Search Engine on UNIX” on page 7-1 or
“Starting the Full-Text Search Engine on Windows NT” on page
7-3.

Log in to Adaptive Server, and run the sp_redo_text_events system
procedure in the restored database. For example, if you are
restoring the pubs2 database, you have to be in that database to
run the system procedure, sp_redo_text_events, as follows:

sp_redo_text_events "fromdate"

where from_date is the date and time associated with the backup
used to recover the collections.

For example:
sp_redo_text_events "10/31/97: 16: 45"

restores the collections up to October 31, 1997 at 4:45 PM. For
more information, see “sp_help_text_index” on page A-11.

Run the sp_text_notify system procedure to notify the Full-Text
Search engine that changes need to be propagated to the Verity
collections. The Full-Text Search engine connects to Adaptive
Server, reads all the unprocessed entries in the text_events table
and applies them to the text index. For more information, see
“sp_text_notify” on page A-32.

Full-Text Search Specialty Data Store User's Guide 7-17

Backup and Recovery for the Enhanced Full-Text Search Engine Full-Text Search SDS Version 12.x

Your text indexes and collections are now fully restored.

Backup and Recovery for the Enhanced Full-Text Search Engine

7-18

O Note

Backup and recovery for the Enhanced Full-Text Search Specialty
Data Store is automated with the sp_text_dump_database and
sp_text_load_index system procedures. These system procedures
provide a seamless interface for maintaining data and text index
integrity.

The Adaptive Server user database and the Verity collections are
physically separate. Backing up your user database does not back up
the Verity collections, and restoring your database from a backup
does not restore your Verity collections. The backup and recovery
procedures described in Chapter 21, “Backing Up and Restoring
User Databases,” of the System Administration Guide apply only to the
user database and the text_db database in Adaptive Server.

Follow the recommended schedule for backing up your databases, as
described in Chapter 20, “Developing a Backup and Recovery Plan,”
of the System Administration Guide. Sybase recommends that when
you back up a user database with text indexes, you also back up:

= The text_db database
= The text indexes

You do not have to back up the user database and text indexes at the same
time to recover the text indexes. However, you must restore the user
database before you restore the text index. This restores the text_events
table, which the sp_text_load_index system procedure uses to bring the text
indexes in sync with the user database.

A regular backup schedule ensures the integrity of the text indexes,
the Adaptive Server data, and the text_events table, all of which are
integral to recovering your text indexes without having to drop and
re-create them.

If you have Standard Full-Text Search Specialty Data Store, use the
process described in “Backup and Recovery for the Standard Full-
Text Search Engine” on page 7-15.

System Administration

Full-Text Search SDS Version 12.x Backup and Recovery for the Enhanced Full-Text Search Engine

Customizable Backup and Restore

backCmd and restoreCmd allow customizable backup and restore
commands to be used instead of tar or zip commands when backing
up collection files. If these two parameters are blank, the default
commands are used, otherwise the specified command is executed.
String substitution is performed before execution to allow
specification of input and output directories and collection
identification. The string substitution is defined as follows:

« ${backDir} is replaced by the backup directory specified as the
“backDir” configuration parameter.

= ${colIDir} is replaced by the full path name for the collection

= ${colID} is replaced by the collection ID which is the full name of
the backup file.

Backing Up Verity Collections

The sp_text_dump_database system procedure backs up collections and
(optionally) the user and text_db databases. sp_text_dump_database also
maintains the text_events table by deleting entries that are no longer
needed for recovery. It is available only with the Enhanced Full-Text
Search engine.

During a backup, the Full-Text Search engine processes queries, but
defers any update requests until the backup is complete. This
eliminates the need to shut down and restart the Full-Text Search
engine.

Run sp_text_dump_database from the database containing the text
indexes you are backing up. Make sure all the required servers are
running when issuing the sp_text_dump_database command.
sp_text_dump_database unconditionally backs up all indexes of all
enhanced text servers. The backup of the text indexes is placed in the
directory specified in the backDir configuration parameter. The output
of the dump database command is written to the Full-Text Search error
log. Sybase recommends dumping the current database and the
text_db database at the time the text indexes are backed up. However,
this is optional.

For example, to back up the text indexes, the sample_colors_db
database to the /work2/sybase/colorsbackup directory, and the text_db
database to the /work2/sybase/textdbbackup directory, enter:

Full-Text Search Specialty Data Store User's Guide 7-19

Backup and Recovery for the Enhanced Full-Text Search Engine

Full-Text Search SDS Version 12.x

7-20

1>
2>

1>
2>

O Note

sp_t ext _dunp_dat abase @ackupdbs =

| NDEXES_AND_DATABASES, @urrent_to = "to

'/ wor k2/ sybase/ col or shackup'", @extdb_to="to
'/ wor k2/ sybase/ t ext dbbackkup' "

It is important to back up the text_db database whenever text indexes are
backed up, since that database contains the metadata for all text indexes.

sp_text_dump_database may fail on Solaris if the required file size is
greater than 2GB.

For more information, see “sp_text_dump_database” on page A-25.

Restoring Collections and Text Indexes from Backup

The sp_text_load_index system procedure restores text indexes that
have been backed up with the sp_text dump_database system
procedure.

As Database Administrator, perform the following procedures to
restore your \erity collections:

1. Restore your Adaptive Server user database and text_db
database. This returns the source tables, metadata, and
text_events table to a consistent and predictable state. Follow the
procedures described in Chapter 21, “Backing Up and Restoring
User Databases,” in the System Administration Guide, to restore
user and text_db databases.

2. Run sp_text_load_index to restore the Verity collection from the
most recent index dump. The procedure resets the status of all
text_events table entries made since the last index dump to
“unprocessed” and notifies the Full-Text Search engine to
process those events.

Example:

To restore the sample_colors_db database and all of its text indexes:
1. Restore the text_db database:

use naster

go

| oad dat abase text_db from'/work2/sybase/t ext dbbackkup'

go

System Administration

Full-Text Search SDS Version 12.x Backup and Recovery for the Enhanced Full-Text Search Engine

2. Restore the sample_colors_db database:

1> | oad dat abase sanple_colors_db from
'/ wor k2/ sybase/ col or sbackup'
2> go

3. Bring the text_db and sample_colors_db databases online:

1> online database text_db
2> online database sanpl e_col ors_db
3> go

4. Restore the text index:

1> use sanpl e_col ors_db
2> go

1> sp_text_| oad_i ndex
2> go

For more information, see “sp_text_load_index” on page A-30.

Full-Text Search Specialty Data Store User's Guide 7-21

Backup and Recovery for the Enhanced Full-Text Search Engine Full-Text Search SDS Version 12.x

7-22 System Administration

Performance and Tuning

The Full-Text Search engine is shipped with a default configuration.
You can optimize the performance of the Full-Text Search engine by
altering the default configuration so that it better reflects the needs of
your site. This chapter describes ways in which you can enhance
performance. Topics include:

« Updating Existing Indexes 8-1

= Increasing Query Performance 8-2

= Reconfiguring Adaptive Server 8-3

= Reconfiguring the Full-Text Search Engine 8-4

« Using sp_text_notify 8-5

= Configuring Multiple Full-Text Search Engines 8-5

Updating Existing Indexes

The amount of time it takes to update records in a text index can be
reduced by enabling (turning on) trace flag 11 or trace flag 12, or
both:

= Enabling trace flag 11 disables Verity collection optimization.
This means that Verity does not optimize the text index after you
issue sp_text_notify, which is a performance gain. If trace flag 11 is
turned off (the default), the Full-Text Search engine calls \erity to
optimize the text index at the end of sp_text_notify processing,
which can delay the completion of sp_text_notify.

With Enhanced Full-Text Search Specialty Data Store, you can
use the sp_optimize_text_index system procedure to optimize a text
index at a later time if trace flag 11 is enabled. (For more
information, see “sp_optimize_text_index” on page A-12.)

= Enabling trace flag 12 disables the Full-Text Search engine from
returning sp_statistics information. If trace flag 12 is turned off (the
default), an update statistics command is issued to the Full-Text
Search engine, which can delay the completion of sp_text_notify.

If updates to the text index occur as often as every few seconds, you
may improve performance by disabling the update statistics processing
and the Verity optimization, or both, for most of the updates.

Full-Text Search Specialty Data Store User's Guide 8-1

Increasing Query Performance Full-Text Search SDS Version 12.x

Trace flags 11 and 12 can be enabled and disabled interactively using
the remote procedure calls sp_traceon and sp_traceoff in the Full-Text
Search engine.

Increasing Query Performance

8-2

Two issues can significantly improve query performance:

= Limiting the number of rows returned by the Full-Text Search
engine

= Ensuring the correct join order for queries

Limiting the Number of Rows

Use the max_docs pseudo column to limit the number of rows
returned by the Full-Text Search engine. The fewer the number of
rows returned by the Full-Text Search engine, the faster Adaptive
Server can process the join between the source table and the index
table.

Ensuring the Correct Join Order for Queries

The more tables and text indexes that are listed in a join, the greater
the chance that the query will run slowly because of incorrect join
order. Queries run fastest when the text index is queried first during
a join between the text index and one or more tables.

To ensure correct join order:

< Make sure that a unique clustered or nonclustered index is
created on the IDENTITY column of the table being indexed

= Limit joins to one base table and one text index

If a query is running slowly, use showplan or enable trace flag 11205,
and examine the join order. Trace flag 11205 dumps remote queries to
the Adaptive Server error log file. The fastest queries contain an
index_any search condition in the where clause and query the text index
first.

The slowest queries contain the id column in the text index where
clause and query the indexed table first. In this case, rewrite the

query or use forceplan to force the join order that is listed in your

query. For more information about forceplan, see Chapter 10,

Performance and Tuning

Full-Text Search SDS Version 12.x Reconfiguring Adaptive Server

“Advanced Optimizing Techniques,” in the Performance and Tuning
Guide.

Reconfiguring Adaptive Server

You can improve the performance of the Full-Text Search engine by
resetting the following Adaptive Server configuration parameters.
(For information about setting configuration parameters with
sp_configure, see Chapter 11,”Setting Configuration Parameters,” in
the System Administration Guide.)

Cis cursor rows

The cis cursor rows parameter specifies the number of rows received by
Adaptive Server during a single fetch operation. The default number
for cis cursor rows is 50. Increasing this number increases the number
of rows received by Adaptive Server from the Full-Text Search
engine during a fetch operation. However, keep in mind that the
larger the number you set for cis cursor rows, the more memory
Adaptive Server will dynamically allocate to return the result set.

cis packet size

O Note

The cis packet size parameter determines the number of bytes
contained in a single network packet. The default for cis packet size is
512. You must specify values for this parameter in multiples of 512.
Increasing this parameter improves the performance of the Full-Text
Search engine because, with a larger packet size, it returns fewer
packets for each query. However, keep in mind that the larger the
number you set for cis packet size, the more memory Adaptive Server
will allocate for that parameter.

The cis packet size parameter is dynamic; you do not need to reboot
Adaptive Server for this parameter to take effect.

If you change the cis packet size, you must also change the max_packetsize
parameter in the Full-Text Search engine configuration file to the same
value. If CIS is used to access other remote servers, the max network
packet size on those servers must be increased as well.

Full-Text Search Specialty Data Store User's Guide 8-3

Reconfiguring the Full-Text Search Engine Full-Text Search SDS Version 12.x

You need to reboot the Full-Text Search engine for the max_packetsize
parameter to take effect.

Reconfiguring the Full-Text Search Engine

8-4

You can improve the performance of the Full-Text Search engine by
reconfiguring the following Full-Text Search engine configuration
parameters (see “Modifying the Configuration Parameters” on page
7-5):

batch_size

The batch_size configuration parameter determines the number of
rows per batch the Full-Text Search engine indexes. batch_size has a
default of 500 (that is, 500 rows of data indexed per batch).
Performance improves if you increase the size of the batches that are
indexed. However, the larger the batch size, the more memory the
Full-Text Search engine allocates for this parameter.

When considering how large to set batch_size, consider the size of the
data on which you are creating a text index. When creating the text
index, the Full-Text Search engine allocates memory equal to (in
bytes):

(amount of space needed for data) x (batch_size) = memory used

For example, if the data you are indexing is 10,000 bytes per row, and
batch_size is set to 500, then the Full-Text Search engine will need to
allocate almost 5MB of memory when creating the text index.

Base the batch size you choose on the typical size of your data and
the amount of memory available on your machine.

min_sessions and max_sessions

min_sessions and max_sessions determine the minimum and maximum
number of user connections allowed for the Full-Text Search engine.
Each user connection requires about 5MB of memory. Do not set
max_sessions to an amount that exceeds your available memory. Also,
because the memory for min_sessions is allocated at start-up, if you set
the number for min_sessions extremely high (to allow for a large
number of user connections), a large percentage of your memory will
be dedicated to user connections for the Full-Text Search engine.

Performance and Tuning

Full-Text Search SDS Version 12.x Using sp_text_notify

You may improve the performance of the Full-Text Search engine by
setting min_sessions equal to the average number of user sessions that
will be used. Doing so prevents the Full-Text Search engine from
having to allocate memory at the start of the user session.

Using sp_text_notify

O Note

Review the needs of your site before you decide how often to issue
sp_text_notify.

Using the sp_text_notify system procedure produces a load on the Full-
Text Search engine as the system procedure reads the data and
updates the text collections. Depending on the size of this load, the
performance hit for issuing sp_text_notify can be substantial. Because
of the performance implications, you must determine how up to date
the indexes need to be. If they need to be current (close to real-time),
then you will have to issue sp_text_notify frequently (as often as every
5 seconds). However, if your indexes do not need to be that current,
it may be prudent to wait until the system is not active before you
issue sp_text_notify.

You cannot issue sp_text_notify from within a transaction.

Configuring Multiple Full-Text Search Engines

For tables that are used frequently, you can improve performance by
placing the text indexes for these tables on separate Full-Text Search
engines. Performance improves because users can spread their
queries over a number of Full-Text Search engines, instead of
sending all queries to a single engine. Each Adaptive Server can
connect to multiple Full-Text Search engines, but each Full-Text
Search engine can connect to only one Adaptive Server.

Creating Multiple Full-Text Search Engines at Start-Up

If you are initially creating multiple Full-Text Search engines, you
can edit the installtextserver script so that it includes all of those Full-
Text Search engines. For more information, see “Editing the
installtextserver Script” on page 4-2.

Full-Text Search Specialty Data Store User's Guide 8-5

Configuring Multiple Full-Text Search Engines Full-Text Search SDS Version 12.x

8-6

Adding Full-Text Search Engines

You can add Full-Text Search engines at a later date by issuing the
sp_addserver command from isql. The sp_addserver command has the
following syntax:

sp_addserver server_nane [, server_class [, physical _nane]]

where:

= server_name is the name used to address the server on your
system (in this case, the Full-Text Search engine).

= server_class identifies the category of server being added. For the
Full-Text Search engine, the value is “sds”.

= physical_name is the name in the interfaces file used by the server
Sserver_name.

For more information, see sp_addserver in the Adaptive Server Reference
Manual.

For example, to add a Full-Text Search engine named BLUE, enter:
sp_addserver BLUE, sds, BLUE

After you configure and start the Full-Text Search engine, you can
use the following syntax to see if you can connect to the Full-Text
Search engine from the Adaptive Server:

server_nane. ..sp_show_text_online
For example, to connect to a server named BLUE, enter:

BLUE. . . sp_show_text _online

Configuring Additional Full-Text Search Engines

Follow the steps described in “Configuring the Full-Text Search
Engine” in the Installation and Release Bulletin for your platform, to
configure additional Full-Text Search engines. Each Full-Text Search
engine requires its own:

= |Interfaces file entry
= Configuration file

All Full-Text Search engines use the same database (named text_db
by default) for storing text index metadata and the same vesaux and
vesauxcol tables.

Performance and Tuning

Full-Text Search SDS Version 12.x Multiple Users

Multiple Users

The following tips will help avoid deadlocks with multiple users:

1. Make sure the ASE is using the same number of connections as
the Full-Text Search. 100 is the default.

sp_configure “user connections”, 100

2. Make sure the vesaux, vesauxcol and text_events tables (in the
model, or in each of your new databases) are using row level
locking.

For existing tables: alter table table_name lock datarows
For new tables: create table ... lock datarows

3. For large batches of commands, try to break them into smaller
transactions.

4. If deadlocks still occur, increase the number of locks available to
the ASE, and tweak the row lock promotion settings. See the
ASE System Administration Guide to assist with setting locks.

Full-Text Search Specialty Data Store User's Guide 8-7

Multiple Users

Full-Text Search SDS Version 12.x

8-8

Performance and Tuning

What are Topics?

Verity Topics

This chapter is reproduced with permission from Verity. It is a section
of Verity documentation provided to give Full-Text Search users
insight into the complex issue of Verity Topics.

A topic is a grouping of information related to a concept, or a subject
area. Topics provide a convenient means by which you can
encapsulate knowledge, and make it available to end users as a
shared resource. By adding topics to your Verity application, users
can more easily perform searches over the subject matter which the
topics represent.

Topics are combined to form knowledge bases that represent a
catalogue of knowledge that users can tap into when performing
searches. Knowledge bases offer users the ability to find the
information they want without having to compose sophisticated
queries using complex syntax.

Topic Organization

Topics organize groups of related search criteriain a format similar to
that of an outline. Operators and modifiers act as the glue that joins
related groups of search criteria. You can create topics as
independent units, or as units with relationships to other topics in a
hierarchical structure.

Weight Assignments

You can even give some groups of search criteria more weight than
other groups of search criteria in a topic's structure. Assigning
weight to search criteria affects the importance of documents
selected in a search; the closer a document is to the top of the results
list, the more important, or relevant, the document is to the search
criteria. A search criteria weight is a number between 0.01 and 1.00.
The position of a selected document in the results list can help you
determine at a glance how relevant the document is compared to the
search criteria.

Full-Text Search Specialty Data Store User's Guide 9-1

Using a Topic Outline File Full-Text Search SDS Version 12.x

Using a Topic Outline File

You can compose topics by creating a topic outline file.

A topic outline file is an ASCII text file in a structured format that
contains topic definitions. A topic outline file might appear as
follows:

$Control : 1

art <Accrue>

*perform ng-arts <Accrue>
**0.80 "ballet"

**0.50 "dram"

**0.50 'dance'

**0.80 "opera"

**(0. 80 "synphony"

**0.90 "chanber nusic"
**"| saac Stern"

*film <Accrue>
**directors <Filter>
/definition="title CONTAINS Truffaut"
*visual -arts <Accrue>
literature <Accrue>

phi | osophy <Accrue>

| anguage <Accrue>

hi story <Accrue>

$$

You can create a topic outline file with any text editor.

Making Topics Available

The topics you make available to users must exist within a topic set
that is generated using the mktopics utility. Verity topic sets generated
by mktopics can be used by any Verity application. A single topic set
supports a maximum of 20,000 topic definitions, and the exact
number of topics allowed for one topic set depends on the Verity
query language used to define them.

Setup Process

Making topics available to users is a three-step process, as outlined
below.

9-2 Verity Topics

Full-Text Search SDS Version 12.x Knowledge Bases of Topics

1. Create topic definitions using a topic outline file.

2. Generate a topic set. You can create a topic set using the mktopics
utility. The mktopics utility creates the topic set and can also index
the topics over a specific collection.

3. Import the topic set to the Full-Text Search engine.

Knowledge Bases of Topics

This section discusses the principle features of knowledge bases, and
the organization format used to define topics for them.

The following aspects of topic knowledge bases are covered:
= Combining topics into a knowledge base

= The structure of topics

= The relationship between topics and subtopics

= Topic types

= Naming topics

Combining Topics into a Knowledge Base

A topic is simply a grouping of information related to a concept, or a
subject area. A knowledge base is a grouping of these concepts called
topics. Combining topics into a knowledge base provides users with
the ability to look up concepts saved as topics in a convenient
fashion.

The subject area of a topic is typically identified by the topic's name.
In the example below, the subject of the topic is performing-arts. This
topic is composed of two structural elements, its name, performing-
arts, and its evidence topics, ballet, musical, dance, opera, symphony, and
drama.

Operators and modifiers act as the glue that joins related evidence
topics. Operators represent logic to be applied to evidence topics.
This logic defines the qualifications of the kinds of documents you
want to find. Modifiers apply further logic to evidence topics. For
example, a modifier can specify that documents containing an
evidence topic not be included in the list of results.

Full-Text Search Specialty Data Store User's Guide 9-3

Structure of Topics

Full-Text Search SDS Version 12.x

Structure of Topics

p perfomingrans AccRIE

.‘ an acCRUE

P coorD ballet

b WoRD dRma

' STEM clance

} LR O [,

} WORD sympheny
" Mo - FD i

Atopic's structure becomes more sophisticated as topics are added to
it. In the next example, the topic film has been added to the structure
to form what is now the top-level topic, art. In this structure,
performing-arts and film are subtopics of the topic art.

— P voED ballet
— .- WoRD dRma
— " STEM clancs
— " WORD G,
— " WoRD 3y mphony
— P HoT-WORD Mime

" parfomiingans AECRIE —

— = vERC film

— b- oF motion-pictu s
— b WXED Movie

— " an-fims o

P film aocRUE

Sophisticated topics are composed of top-level topics, subtopics, and
evidence topics. These elements determine the related subject areas
of a topic. Typically, a knowledge base consists of several top-level
topics. Note that subtopics and evidence topics can be used by
multiple top-level topics.

9-4

The structure of topics affects how the topic is interpreted during
search processing. Designing topics so that they accurately express a
concept involves defining a topic structure with the components
described below.

Verity Topics

Full-Text Search SDS Version 12.x Structure of Topics

Top-Level Topics

Top-level topics are the highest topics defined in a topic structure.
Top-level topics represent the subject areas you want a \Verity search
agent to find. In the example below you could think of, literature,
philosophy, languages, history, and art as top-level subtopics that
comprise the top-level topic, liberal-arts.

— " ltemture 22oRITE

— J» phibsophy accRuE

— P* WoRD ballet

— } languases AECRIE | : WORD ClRMa
— P sTEMcance

— } WORD: e,

— } WORD symphony
— P moT-WeRD mime

} libeml-ats ACCRUE —
— P pefoming-ats accRE —
— P histon: acoRTE

— Jp woRD fim

— } R motion-pictures
— g WORD MO

— P att aocruE —— — P arfims ox

— .‘ film acCRITE

— P weRD: painting
— P visualans accRiE P oD sculptur
— P atfiims o

' } WORD vicks
L P vicks oR —E" OB T

Subtopics

Subtopics form the levels between top-level topics and evidence
topics. The name of a subtopic should identify the subject area that
its subtopics or evidence topics combine to describe. For example,
the subtopic visual-arts includes several related words, or evidence
topics, as shown below:

p woED painting
b. visuaklans ACCRUE 4E F WeRD sculptune
p ar-fims oR

Full-Text Search Specialty Data Store User's Guide 9-5

Structure of Topics

Full-Text Search SDS Version 12.x

9-6

Evidence Topics

Evidence topics are the lowest units of a topic structure. Evidence
topics are strings, made up of combinations of alphanumeric
characters. An evidence topic can contain up to 128 alphanumeric
characters.

Topic and Subtopic Relationships

P liberl-ats AccRIE —

Each topic and its associated subtopics form a hierarchical parent
and child relationship. In the example below, the subtopics
performing-arts, film, visual-arts, and video are children of the art
topic. The art topic itself is a child of the liberal-arts topic. The liberal-
arts topic could in turn be a child of successively higher parent topics
within the structure.

— B lftemtue 2ecRUE

— P phiksophy accrE

— W oRD balkt

— .' WCORD drama
— } STEM clance

— P oD cpem

— " WCORD swmphony
— b- NGT-WOFD Mime

— } languages ACCRUE

— P perioming-ats acoRUE —
— P histony rooRuE

— Jp werD fim

— '. oR motion-pictures
| — p, WORD MW

— } At ACCRUE —| — ’, art-films oF

— " film azcRUE

— I woRD painting
— } isualats ACCRUE L e woRD sculpture
— Jp arfilms o

) chey
L— v viden oR: —E: ﬁgg‘m

When you use a topic to perform a search, the subject area defined by
the topic includes its subtopics, their subtopics, and so on, down to
the evidence topics of the structure. Topics that are not direct
descendants of the topic you use are not included in the search.

In the example above, for instance, a search using the film topic
would cause the Verity search engine to find documents containing
information on film, motion pictures, movies, and art films. In this

Verity Topics

Full-Text Search SDS Version 12.x Maximum Number of Topics

example, the search would not find documents related to the
performing-arts, visual-arts, or video topics since these topics are not
children, of the film topic. However, if the art topic was used, the
search would find documents related to all the art topic's children,
which includes performing-arts, film, visual-arts, and video.

Maximum Number of Topics

A single topic set representing a knowledge base can consist of as
many as 20,000 topics. This includes top-level topics, subtopics, and
evidence topics. Topics containing as many as 1,000 subtopics may
exceed memory limitations when used in a search.

Topic Naming Issues

Note the following issues surrounding the naming of topics.

Topic Name Length

A topic hame can contain up to 128 alphanumeric characters,
including hyphens and underscores.

Case Sensitivity

Topic names and evidence topics are normally case-insensitive. You
can name a evidence topic using all caps, as in APPLE, initial caps, as
in Apple, or all lower-case, as in apple. Case is not considered when
a search is performed. Thus, if your evidence topic is entered as
APPLE, the Verity search engine will select documents containing
"APPLE", "Apple", or "apple”.

You can, however, use the CASE modifier to specify that case match
the entry of a evidence topic.

Verity Query Language

This section describes the Verity Query Language, consisting of
operators and modifiers that you can use to create topics. Operators
represent logic to be applied to search elements which can be
combined to create a topic. This logic defines the qualifications of the
kinds of documents you want to find. Modifiers apply further logic

Full-Text Search Specialty Data Store User's Guide 9-7

Verity Query Language

Full-Text Search SDS Version 12.x

to search elements. For example, a modifier can specify that a search
element be case-sensitive.

The information in this section includes the following:
= Query Language Summary

« Operator Precedence Rules

= Sample Topic Outlines

« Operator Reference

= Modifier Reference

Query Language Summary

9-8

The Verity Query Language consists of operators and modifiers.
Both operators and modifiers represent logic to be applied to a search
element. This logic defines the qualifications a document must meet
to be retrieved. Operators are classified by their type, as follows:

= Evidence operators
= Proximity operators
= Relational operators
= Concept operators
= Boolean operators

Modifiers extend the logic applied by operators and are used in
combination with operators.

Evidence Operators

Evidence operators expand a search word into a list of related words
which are then searched for as well. When you perform a search
using an evidence operator, documents containing one or more
occurrences of the words in the expanded word list are documents
containing the word specified, as well as its synonyms. Documents
retrieved using evidence operators are not relevance-ranked unless
you use the MANY modifier. See "MANY Modifier" in this section

Verity Topics

Full-Text Search SDS Version 12.x Verity Query Language

for information. The following table describes each evidence
operator.

Table 9-1: Evidence Operators

Operator Name

Description

WORD Selects documents that include one or more instances of a word you
specify.

STEM Selects documents that include one or more variations of the search
word you specify.

THESAURUS Selects documents that contain one or more synonyms of the word you
specify.

WILDCARD Selects documents that contain matches to a character string
containing variables.

SOUNDEX Selects documents that include one or more words that "sound like," or
whose letter pattern is similar to, the word specified.

NEAR/N Expands the search to include the word you enter plus words that are

similar to the query term. This operator performs "approximate
pattern matching" to identify similar words.

Proximity Operators

Proximity operators specify the relative location of specific words in
the document; that is, specified words must be in the same phrase,
paragraph, or sentence for a document to be retrieved. In the case of
the NEAR and NEAR/N operators, retrieved documents are
relevance-ranked based on the proximity of the specified words.
When proximity operators are nested, the ones with the broadest
scope should be used first; that is, phrases or individual words can
appear within SENTENCE or PARAGRAPH operators, and
SENTENCE operators can appear within PARAGRAPH operators.
The following table describes each proximity operator.

Table 9-2: Proximity Operators

Operator Name

Description

IN Selects documents that contain specified values in one or more
document zones. A document zone represents a region of a document,
such as the document's summary, date, or body text.

PHRASE Selects documents that include a phrase you specify. A phrase is a

grouping of two or more words that occur in a specific order.

Full-Text Search Specialty Data Store User's Guide 9-9

Verity Query Language

Full-Text Search SDS Version 12.x

9-10

Table 9-2: Proximity Operators

Operator Name

Description

SENTENCE Selects documents that include all of the words you specify within a
sentence.

PARAGRAPH Selects documents that include all of the search elements you specify
within a paragraph.

NEAR Selects documents containing specified search terms within close
proximity to each other.

NEAR/N Selects documents containing two or more words within N number of

words of each other, where N is an integer.

Relational Operators

Relational operators search document fields (such as AUTHOR) that
have been defined in the collection. These operators perform a
filtering function by selecting documents that contain specified field
values. The fields that are used with relational operators can contain
alphanumeric characters. Documents retrieved using relational
operators are not relevance-ranked, and you cannot use the MANY
modifier with relational operators.

When creating topics, relational operators are always used in
conjunction with the special FILTER operator. See the example under
the topic "visual-arts" in "Sample Topic Outlines" later in this section
for the proper syntax.

A number of relational operators are available for numeric and date
comparisons, including the following: = (equals), > (greater than), >=
(greater than or equal to), < (less than), <= (less than or equal to).

A number of relational operators are available for text comparisons,
including the following.

Table 9-3: Relational Operators

Operator Name

Description

CONTAINS Selects documents by matching the word or phrase you specify with
values stored in a specific document field.

MATCHES Selects documents by matching the character string you specify with
values stored in a specific document field.

STARTS Selects documents by matching the character string you specify with

the starting characters of the values stored in a specific document field.

Verity Topics

Full-Text Search SDS Version 12.x Verity Query Language

Table 9-3: Relational Operators

Operator Name

Description

ENDS Selects documents by matching the character string you specify with
the ending characters of the values stored in a specific document field.
SUBSTRING Selects documents by matching the character string you specify with a

portion of the strings of the values stored in a specific document field.

Concept Operators

Concept operators combine the meaning of search elements to
identify a concept in a document. Documents retrieved using
concept operators are relevance-ranked. The following table
describes each concept operator.

Table 9-4: Concept Operators

Operator Name

Description

AND Selects documents that contain all of the search elements you specify.

OR Selects documents that show evidence of at least one of your search
elements.

ACCRUE Selects documents that include at least one of the search elements you

specify.

Boolean Operators

Boolean operators can be assigned to topics to retrieve documents
containing any or all of the children of that topic. Unlike topics
created using the concept operators, Boolean operators do not accept
weights. The following table describes each Boolean operator..

Table 9-5: Boolean Operators

Operator Name

Description

ALL

Selects documents that contain all children of a topic.

ANY

Selects documents that contain at least one of the children of a topic.

Full-Text Search Specialty Data Store User's Guide 9-11

Verity Query Language Full-Text Search SDS Version 12.x

Modifiers

Modifiers affect the behavior of operators. The following table
describes each modifier..

Table 9-6: Modifiers

Operator Name Description
CASE Performs a case-sensitive search.
MANY Counts the density of words or phrases in a document and produces a
relevance-ranked score for the retrieved documents.
NOT Excludes documents that show evidence of the specified word or
phrase.
ORDER Specifies the order in which search elements must occur.
Operator Precedence Rules
The Verity search engine uses precedence rules to determine how
operators can be assigned. These rules state that some operators rank
higher than others when assigned to topics, and affect how
document selections are performed.
The following table describes how precedence rules apply to
operators.
Table 9-7: Precedence rules
Operator Precedence How Precedence is Determined
AND Highest The concept operators take the highest precedence over the other
OR precedence operators. Thus, subtopics of topics using these operators can be
assigned any of the operators listed below under "incremental
ACCRUE precedence” or "lowest precedence."”
ALL Incremental The proximity operators refer to incremental ranges which exist
precedence within a document. Subtopics of topics using these operators can
PARAGRAPH (in descendin be assigned their next lowest operator in the precedence order.
SENTENCE order) 9 Thus, a phrase takes precedence over a word; a sentence takes
NEAR precedence over a phrase or a word; and a paragraph takes
precedence over a sentence, a phrase, or a word.
NEAR/N
PHRASE
ANY
9-12 Verity Topics

Full-Text Search SDS Version 12.x Sample Topic Outlines

Table 9-7: Precedence rules

Operator Precedence How Precedence is Determined
WORD Lowest The evidence operators reside at the lowest level in a topic

precedence structure. Because evidence operators are used with words
STEM . -

contained in documents, these operators all have the same

SOUNDEX precedence.
WILDCARD
THESAURUS

To avoid a precedence violation, do not use ANY or ALL in a parent
topic whose child topic includes a concept operator (AND, OR,
ACCRUE). Topics that use ANY or ALL cannot have variable
weights assigned to them, so you cannot use these operators in a
parent topic with any child topic that allows variable weights (such
as AND, OR, ACCRUE). Topics using ANY and ALL limitevaluation
to present or not present (a score of 0.00 or 1.00). If the criteria are
met, the children of these topics get an automatic score of 1.00; if the
criteria are not met, the children of these topics get an automatic
score of 0.00; so it is not meaningful to assign these children variable
weights such as 0.80.

Sample Topic Outlines

The following are the same topics as you would create them in a
topic outline file:

$Control : 1

art <Accrue>
*performng-arts <O >
**0.80 "dram"

**0.50 "theater"

**(0. 80 'dance'

*film <And>

**0.90 "ci nema"

**0.90 "docunentary"
**newsreel <Filter>
/definition="DATE >= 05/01/96"
*filmnmakers <Accrue>
**"\Wyody Allen"

*fil mmaki ng <Paragraph>
**"direct"

**"produce"

*visual -arts <Accrue>
**gcul pture <l n>

Full-Text Search Specialty Data Store User's Guide 9-13

Operator Reference

Full-Text Search SDS Version 12.x

Operator Reference

/ zonespec="title"
**painters <Filter>
/definition="Title MATCHES Fanous Pai nters"
**<Thesaur us>

/ wor dt ext =" pai nt"
literature <Accrue>
*novel s <Near >

**0.80 "Proust"

**(0.80 "Renenbrance" <Case>
*ameri can- novel <Sentence>
**" Amreri can”

**"novel "

hi story <Accrue>
*<W | dcar d>

/ wor dt ext =" hi stor*"

nmusi ¢ <Accr ue>

*jazz

**"pebop"

**<Not > "fusion"

*cl assi cal

**"|talian opera”

$$

Each operator is listed below alphabetically. Examples for many of
these operators can be found in the topic outline in the previous
section.

ACCRUE Operator

9-14

Selects documents that include at least one of the search elements
you specify. Valid search elements are two or more words or phrases.
Selected documents are relevance-ranked.

The ACCRUE operator scores selected documents according to the
presence of each search element in the document using a "the more,
the better" approach: the more search elements found in the
document, the better the document's score. Several examples of the
ACCRUE operator appear in the sample outline file in the previous
section, "Sample Topic Outlines."

Verity Topics

Full-Text Search SDS Version 12.x Operator Reference

ALL Operator

Selects documents that include all of the search elements you specify.
Unlike the ACCRUE operator, you cannot assign weights when you
use the ALL operator.

AND Operator

Selects documents that contain all of the search elements you specify.
Documents selected using the AND operator are relevance-ranked.
The example in "Sample Topic Outlines" shows how the AND
operator might be used with the topic "film." In the example, only
those documents that contain both search words and a date greater
than or equal to 05/01/96 are selected and ranked according to their
score.

ANY Operator

Selects documents include at least one of the search elements you
specify. Unlike the ACCRUE operator, you cannot assign weights
when you use the ANY operator.

CONTAINS Operator

Selects documents by matching the word or phrase you specify with
values stored in a specific document field. When you use the
CONTAINS operator, you specify the field name to search, and the
word or phrase to search for.

With the CONTAINS operator, the words stored in a document field
are interpreted as individual, sequential units. You may specify one
or more of these units as search criteria. To specify multiple words,
each word must be sequential and contiguous, and must be
separated by a blank space. Use CONTAINS with the FILTER
operator.

The syntax for CONTAINS is the same as that for MATCHES. See the
example for MATCHES under the topic "visual arts" in "Sample
Topic Outlines." The example assumes that the field TITLE has been
created for the collection.

The CONTAINS operator does not recognize non-alphanumeric
characters. The CONTAINS operator interprets non-alphanumeric
characters as a space and treats the separated values as individual

Full-Text Search Specialty Data Store User's Guide 9-15

Operator Reference

Full-Text Search SDS Version 12.x

9-16

units. For example, if you have defined a slash (/) as a valid
character, and you enter search criteria that include this character, as
in OS/2,"0S" and "2" are treated as individual units.

Note that the CONTAINS operator does not refer to the style.lex file
for the definition of which characters are included in a word.

ENDS Operator

Selects documents by matching the character string you specify. Use
ENDS with the FILTER operator. The syntax for ENDS is the same as
that for MATCHES. See the example for MATCHES under the topic
"visual arts" in "Sample Topic Outlines." The example assumes that
the field TITLE has been created for the collection.

= (EQUALS) Operator

Selects documents whose document field values are exactly the same
as the search string you specify. Use EQUALS with the FILTER
operator. The syntax for EQUALS is the same as that for GREATER
THAN OR EQUAL TO. See the example for GREATER THAN OR
EQUAL TO under the topic "film" in "Sample Topic Outlines.” The
example assumes that the field DATE has been created for the
collection.

FILTER Operator

The special FILTER operator is used in conjunction with the
relational operators to do field searches. See the example under the
topic "visual-arts" in "Sample Topic Outlines" for the proper syntax.

> (GREATER THAN) Operator

Selects documents whose document field values are greater than the
search string you specify. Use GREATER THAN with the FILTER
operator. The syntax for GREATER THAN is the same as that for
GREATER THAN OR EQUAL TO. See the example for GREATER
THAN OR EQUAL TO under the topic "film" in "Sample Topic
Outlines." The example assumes that the field DATE has been
created for the collection.

Verity Topics

Full-Text Search SDS Version 12.x Operator Reference

>= (GREATER THAN OR EQUAL TO) Operator

Selects documents whose document field values are greater than or
equal to the search string you specify. Use GREATER THAN OR
EQUAL TO with the FILTER operator. See the example under the
topic "film" in "Sample Topic Outlines." The example assumes that
the field DATE has been created for the collection.

<(LESS THAN) Operator

Selects documents whose document field values are less than the
search string you specify. Use LESS THAN with the FILTER operator.
The syntax for LESS THAN is the same as that for GREATER THAN
OR EQUAL TO. See the example for GREATER THAN OR EQUAL
TO under the topic "film" on "Sample Topic Outlines.” The example
assumes that the field DATE has been created for the collection.

<= (LESS THAN OR EQUAL TO) Operator

Selects documents whose document field values are less than or
equal to the search string you specify. Use LESS THAN OR EQUAL
TO with the FILTER operator. The syntax for LESS THAN OR
EQUAL TO s the same as that for GREATER THAN OR EQUAL TO.
See the example for GREATER THAN OR EQUAL TO under the
topic "film" on "Sample Topic Outlines." The example assumes that
the field DATE has been created for the collection.

IN Operator

Selects documents that contain specified values in one or more
document zones. A document zone represents a region of a
document, such as the document's summary, date, or body text. The
IN operator only works if document zones have been defined in your
collections. If you use the IN operator to search collections for which
zones are not defined, no documents will be selected. In addition, the
zone name you specify must match the zone names defined in your
collections. Consult your collection administrator to determine
which zones have been defined for specific collections. The example
in "Sample Topic Outlines" shows how IN might be used with the
word "sculpture” and the TITLE zone.

Full-Text Search Specialty Data Store User's Guide 9-17

Operator Reference Full-Text Search SDS Version 12.x

MATCHES Operator

Selects documents by matching the character string you specify with
values stored in a specific document field. When you use the
MATCHES operator, you specify the field name to search, and the
word, phrase, or number to search for.

Unlike the CONTAINS operator, the search criteria you specify with
a MATCHES operator must match the field value exactly for a
document to be selected. With the MATCHES operator, any
occurrence of a search string that appears as a portion of a value is
not selected; only values matching the entire search string are
selected.

You can use question marks (?) to represent individual variable
characters within a string, and asterisks (*) to match multiple
variable characters within a string.

Use MATCHES with the FILTER operator. The example in "Sample
Topic Outlines" shows how MATCHES might be used with the
phrase "famous painters" and the TITLE field. The example assumes
that the field TITLE has been created for the collection.

NEAR Operator

Selects documents containing specified search terms within close
proximity to each other. Document scores are calculated based on the
relative number of words between search terms. For example, if the
search expression includes two words, and those words occur next to
each other in a document (so that the region size is two words long),
then the score assigned to that document is 1.00. Thus, the document
with the smallest region containing all search terms always receives
the highest score. Documents whose search terms are not within 1000
words of each other are not selected, since the search terms are
probably too far apart to be meaningful within the context of the
document.

The NEAR operator is similar to the other proximity operators in the
sense that the search words you enter must be found within close
proximity of one another. However, unlike other proximity
operators, the NEAR operator calculates relative proximity and
assigns scores based on its calculations.

The example in "Sample Topic Outlines" shows how NEAR might be
used with the topic "novels."

9-18 Verity Topics

Full-Text Search SDS Version 12.x Operator Reference

NEAR/N Operator

Selects documents containing two or more words within N number
of words of each other, where N is an integer. Document scores are
calculated based on the relative distance of the specified words when
they are separated by N words or less. Documents containing the
specified words separated by more than N words are not selected.
For example, if the search expression NEAR/5 is used to find two
words within five words of each other, a document that has the
specified words within three words of each other is scored higher
than a document that has the specified words within five words of
each other.

The N variable can be an integer between 1 and 1,024, where
NEAR/1 searches for two words that are next to each other. Note
that if N is 1,000 or above, you must specify its value without
commas, as in NEAR/1000.

The NEAR/N operator is similar to the other proximity operatorsin
the sense that the search words you enter must be found within a
close proximity of one another. However, unlike other proximity
operators, the NEAR/N operator assigns scores based on relative
proximity.

OR Operator

Selects documents that show evidence of at least one of your search
elements. Documents selected using the OR operator are relevance-
ranked. The example in "Sample Topic Outlines" shows how you
might use OR with the topic "performing-arts.”

PARAGRAPH Operator

Selects documents that include all of the search elements you specify
within a paragraph. Valid search elements are two or more words or
phrases. You can specify search elements in a sequential or arandom
order. Documents are retrieved as long as search elements appear in
the same paragraph. The example in "Sample Topic Outlines" shows
you how you might use PARAGRAPH with the topic "film-making."

PHRASE Operator

Selects documents that include a phrase you specify. A phrase is a
grouping of two or more words that occur in a specific order. You

Full-Text Search Specialty Data Store User's Guide 9-19

Operator Reference

Full-Text Search SDS Version 12.x

9-20

must use the PHRASE operator when you enter more than one word
in the evidence field. Words with the PHRASE operator are
displayed in double quotes. The example in "Sample Topic Outlines"
shows "Woody Allen" and "Italian opera" as uses of the PHRASE
operator.

SENTENCE Operator

Selects documents that include all of the words you specify within a
sentence. You can specify search elements in a sequential or a
random order. Documents are retrieved as long as search elements
appear in the same sentence. The example in "Sample Topic
Outlines" shows how you how you might use SENTENCE with the
topic "american-novel."

SOUNDEX Operator

Selects documents that include one or more words that "sound like,"
or whose letter pattern is similar to, the word specified. Words have
to start with the same letter as the word you specify to be selected.
For example, when you use SOUNDEX with "sale," the documents
selected will include words such as "sale," "sell," "seal," "shell," "soul,"
and "scale." Documents are not relevance-ranked unless the MANY
modifier is used.

STARTS Operator

Selects documents by matching the character string you specify with
the starting characters of the values stored in a specific document
field. Use STARTS with the FILTER operator. The syntax for STARTS
is the same as that for MATCHES. See the example for MATCHES
under the topic "visual arts" in "Sample Topic Outlines." The example
assumes that the field TITLE has been created for the collection.

STEM Operator

Selects documents that include one or more variations of the search
word you specify. Words with the STEM operator are displayed in
single quotes. In the example in "Sample Topic Outlines," the word
"dance" is used with the STEM operator. Documents selected will
therefore include words such as "dances," "danced," "and "dancing,"
as well as "dance."

Verity Topics

Full-Text Search SDS Version 12.x Operator Reference

SUBSTRING Operator

Selects documents by matching the character string you specify with
a portion of the strings of the values stored in a specific document
field. The characters that comprise the string can occur at the
beginning of a field value, within a field value, or at the end of a field
value. The syntax for SUBSTRING is the same as that for MATCHES.
See the example for MATCHES under the topic "visual arts" in
"Sample Topic Outlines." The example assumes that the field TITLE
has been created for the collection.

THESAURUS Operator

Selects documents that contain one or more synonyms of the word
you specify. For example, when you use the word "altitude” with the
THESARUS operator, the documents selected will include words
such as "height" and "elevation." Documents are not relevance-
ranked unless the MANY modifier is used.

WILDCARD Operator

Selects documents that contain matches to a character string
containing variables. The WILDCARD operator lets you define a
search string with variables, which can be used to locate related
word matches in documents. The example in "Sample Topic
Outlines" shows how you might use the string "histor*" to search for
words such as "history,” "historical,” and "historian." Documents are
not relevance-ranked unless the MANY modifier is used.

Using Wildcard Special Characters

You can use the following wildcard characters to represent variable
portions of search strings with the WILDCARD operator.

Table 9-8: Wildcard Special Characters

Character

Function

?

Specifies one of any alphanumeric character, as in ?an, which locates
"ran," "pan," "can," and "ban." Note that it is not necessary to specify the
WILDCARD operator when you use the question mark. The question
mark is ignored in a set ([]) or in an alternative pattern ({}).

Full-Text Search Specialty Data Store User's Guide 9-21

Operator Reference Full-Text Search SDS Version 12.x

Table 9-8: Wildcard Special Characters

Character

Function

*

Specifies zero or more of any alphanumeric character, as in corp*, which
locates "corporate,” "corporation,” "corporal," and "corpulent.” Note that
it is not necessary to specify the WILDCARD operator when you use the
asterisk, and you should not use the asterisk to specify the first character
of a wildcard string. The asterisk is ignored in a set ([]) or in an
alternative pattern ({ }).

[]

Specifies one of any character in a set, as in <WILDCARD> “c[auo]t,
which locates "cat,” "cut," and "cot." Note that you must enclose the word
which includes a set in backquotes (°), and there can be no spaces in a
set.

{} Specifies one of each pattern separated by a comma, as in
<WILDCARD> “bank{s,er,ing}’, which locates "banks," "banker," and
"banking." Note that you must enclose the word which includes a
pattern in backquotes (*), and there can be no spaces in a set.

N

Specifies one of any character not in the set, as in <WILDCARD>
“st[oa]ck’, which excludes "stock" and "stack” but locates "stick" and
"stuck.” Note that the caret (™) must be the first character after the left
bracket (]) that introduces a set.

Specifies a range of characters in a set, as in <WILDCARD> “c[a-r]t’,
which locates every three-letter word from "cat” to “crt."

9-22

Searching for Non-alphanumeric Characters

Remember that you can only search for non-alphanumeric
characters if the style.lex file used to create the collections you are
searching is set up to recognize the characters you want to search for.
Consult your collection administrator for information.

Searching for Wildcard Characters as Literals

The wildcard characters listed above are interpreted as wildcard
characters, not literal characters, unless they are delimited by a
backslash (\). If you want a wildcard character to be interpreted as a
literal in a wildcard string, you must precede the character with a
backslash. For example, to match the literal asterisk (*) in a wildcard
string, you delimit the character as follows:

<W LDCARD> a\ *

Verity Topics

Full-Text Search SDS Version 12.x Operator Reference

Searching for Special Characters as Literals

The following non-alphanumeric characters perform special,
internal functions, and by default are not treated as literals in a
wildcard string:

e comma,
= left and right parentheses ()
< double quotation mark "

= backslash \

e atsign @

« left curly brace {

= left bracket [

= less than sign <

= backquote °

To interpret special characters as literals, you must surround the
whole wildcard string in backquotes (). For example, to search for
the wildcard string "a{b", you surround the string with backquotes,
as follows:

<W LDCARD> ~a{b’
To search for a wildcard string that includes the literal backquote

character (°), you must use two backquotes together and surround
the whole wildcard string in backquotes (°), as follows:

<W LDCARD> “*n”"t°
Note that you can only search on backquotes if the style.lex file used
to create the collections you are searching is set up to recognize the

backquote character. Consult your collection administrator for
information.

WORD Operator

Selects documents that include one or more instances of a word you
specify. Words with the WORD operator are displayed in double
guotes. The example in "Sample Topic Outlines" displays many
instances of the WORD operator.

Full-Text Search Specialty Data Store User's Guide 9-23

Modifier Reference Full-Text Search SDS Version 12.x

Modifier Reference

Modifiers further specify the behavior of operators. For example,
you can use the CASE modifier with an operator to specify that the
case of the search word you enter be considered a search element as
well. Modifiers include CASE, MANY, NOT, and ORDER, which are
described below.

CASE Modifier

Use the CASE modifier with the WORD or WILDCARD operator to
perform a case-sensitive search, based on the case of the word or
phrase specified.

By default, documents containing any occurrences of a search word
or phrase are retrieved regardless of case. To use the CASE modifier,
you simply enter the search word or phrase as you wish it to appear
in retrieved documents - in all uppercase letters, in mixed uppercase
and lowercase letters, or in all lowercase letters. The example in
"Sample Topic Outlines” shows how you might use the word
"Remembrance" with the CASE modifier in order to refer to the first
word of Proust's novel, Remembrance of Things Past.

MANY Modifier

Counts the density of words, stemmed variations, or phrases in a
document, and produces a relevance-ranked score for retrieved
documents. The more occurrences of a word, stem, or phrase
proportional to the amount of document text, the higher the score of
that document when retrieved. Because the MANY modifier
considers density in proportion to document text, a longer document
that contains more occurrences of a word may score lower than a
shorter document that contains fewer occurrences.

The MANY modifier can be used with the following operators:
WORD, WILDCARD, STEM, SOUNDEX, PHRASE, SENTENCE,
PARAGRAPH and THESAURUS.

Note that the MANY modifier cannot be used with AND, OR,
ACCRUE, or relational operators.

9-24 Verity Topics

Full-Text Search SDS Version 12.x Weights and Document Importance

NOT Modifier

Use the NOT modifier with a word or phrase to exclude documents
that show evidence of that word or phrase. The example in "Sample
Topic Outlines" shows how you might use the NOT modifier to
retrieve documents that mention "bebop" but not "fusion."”

ORDER Modifier

Use the ORDER modifier to express the order in which search
elements must occur. If search values do not occur in the specified
order in a document, the document is not selected. Always place the
ORDER modifier just before the operator.

Note that you can only use the ORDER modifier with the operators
ALL, PARAGRAPH, SENTENCE, and NEAR/N.

Weights and Document Importance

This section describes assigning weights to search criteria in topics,
and the affect of weights on selected documents. The specific
information covered includes the following:

= Which operators accept weights
< How weights affect importance
= Assigning weights

= Topic scoring and document importance

Topic Weights

When processing a search agent, the Verity search engine calculates a
score for each selected document behind the scenes. A document
score can be in the range from 1.0 to 0.01. The higher a document's
score, the more relevant it is. Using the score assignments for
documents selected by a search agent, Verity applications can
present relevance-ranked results in descending order to application
users.

The ranking of documents is determined by the elements which
comprise your search criteria. Document ranking can be affected
depending on whether the search criteria includes topics, and
whether topics include weights.

Full-Text Search Specialty Data Store User's Guide 9-25

Weights and Document Importance Full-Text Search SDS Version 12.x

9-26

When creating topics, you can assign weights to the topic structure to
indicate the relative importance of specific aspects of the topic
definition. For example, you may be interested in two related
subjects, but one subject is more important than another. Note that
you do not have to assign weights when you compose topics because
default weights are assigned as appropriate when a topic set is
indexed. However, by assigning weights you can fine-tune the
importance of things you are looking for.

Which Operators Accept Weights

Weights are used in conjunction with operators to compute scores for
parent and child topics during a search. The weight you assign to a
topic child can be a number between 0.01 and 1.00. A child's weight
indicates its importance relative to the other children that have been
defined for its parent. The higher a child's weight, the more
important that child is considered to be with respect to its siblings.

Weights can only be assigned to the children of topics which use the
concept operators, as follows:

= AND
= OR
= ACCRUE

Topics which use the proximity operators SENTENCE and
PARAGRAPH, cannot be assigned a weight. These operators assume
asimple "yes" or "no" presence for their children.

Note that if a topic assigned a proximity operator is, in turn, the child
of a topic which has been assigned a concept operator, such as the
AND operator, that child can be assigned a weight.

It is not mandatory that you assign weights to the children of a topic
just because the operator can accept weighted children. When
weights are not assigned, the child has an automatic weight
assignment based on its operator. Children of topics using AND and
OR operators assume a weight of 1.00, and children of topics using
the ACCRUE operator assume a weight of 0.50. If these operators are
changed-for example, if an OR operator is changed to an ACCRUE
operator-the weights of children which have not been specifically
assigned a weight change accordingly. Thus, if an unweighted child
of an AND topic has an assumed weight of 1.00, this assumed weight
changes to 0.50 if the operator is changed to ACCRUE.

Verity Topics

Full-Text Search SDS Version 12.x Weights and Document Importance

If you assign a variable weight to a topic child, then change the
operator used with the parent to one which does not accept weighted
children, such as the SENTENCE operator. The Verity search engine
will automatically assume a weight of 1.00 while this operator is in
effect. If the operator is subsequently changed to one which accepts
variable-weighted children, the previously-assigned variable
weights will become effective once again.

How Weights Affect Importance

When you assign a weight to the child of a topic which uses a concept
operator, you specify the relative contribution of that child to the
overall score produced by a topic. The higher the weight you assign
to the child, the higher selected documents which contain that child
will appear in the list of results. Thus, weights directly affect the
importance, or ranking, of selected documents.

For example, assume you have the following topic:

—— » 1.00 WORD 50286

— P 1.00 WORD G0386

. —— » 0.80 WORD 486
P pe-jargon oR — B 0.50 WORD 336
| 0.50 WORD 256

— > 0.40 STEM clone

The evidence topics 80286 and 80386 (which describe the
microprocessors used in PC products) have an automatic weight
assignment of 1.00. The evidence topics 486, 386, and 286 have a
relatively high probability of referring to their parent topic, so these
evidence topics are assigned weights of 0.80. The evidence topic
clone may or may not refer to PC clones at all; therefore, this
evidence topic is assigned a weight of 0.40.

Full-Text Search Specialty Data Store User's Guide 9-27

Weights and Document Importance Full-Text Search SDS Version 12.x

Scores

1.
1.
0.
0.
0.
0.

Scores

A search agent using this topic and its assigned weights might
produce the following scores for the matched documents:

00 01-0¢t-30 Hew Toshiba Portible Desktop Compubers offer & Serlovs Altemmative for Deskbep Users

00 34-Feb-30 Techmology: ‘chip Set’ Unveiled for Use in Making Faster Computers

80 13-Feb-31 o5 Exhemcements Ine. Wowells Hew Products

80 0d-0et-30 Top selling Microsoft Windows Applicablons Row Available In one Convenient Package

80 01-0ct-30 Repborp Snecessfnl Bidder to Acquire Mew York Stake Divisions of Empire of America Pederal
80 15-Feb-30 Realth: w5, Birth Control Lags

If you change the weights of each evidence topic, the importance of
your selection results are affected, as well. In this example, if you
change the weights of the evidence topic 486 to 0.60, the evidence
topic 386 to 0.45, the evidence topic 286 to 0.35, and the evidence
topic clone to 0.20, your selected document scores will change as
follows:

1.00 01-0et-30 Rew Toshiba Portable Desktop Compubers offer a feriovs Altemnative for Deskbop Users
0 14-Feb-90 Techmologp: ‘chip fet’ Unweiled for Use in Making Faster Compubers
0 13-Feb-31 cM3 Evhancements Inc. Unveils Hew Produets
0 01-0et-30 Bepoorp svecessfnl Bidder to Roquire Rew York State Divisions of Empire of Ameries Federal
0 15-Feb-30 Health: v,z Birth contrel Lags
01-0et-30 Top felling Microsoft Windows Applications How Available in one Convenient Package

9-28

Assigning Weights

When you assign a weight to a child, keep in mind that the weight
you use reflects the importance of a child to its parent topic. The
matched documents will be ranked by importance to the search;
thus, your selection results are directly affected by the weights you
assign. If you change a weight, your selection results will be
changed, as well.

Example:

The topic boeing-people includes three weighted children, binder,
shrontz, and woodard, as shown below.

Verity Topics

Full-Text Search SDS Version 12.x Weights and Document Importance

— | VOED paul
— 060 paul binder PHRASE ,

L) WORD hiner

—) WORD frank

}U.EU hoeing-people ACCRUE ——}U.ED frank shrontz PHRASE —— }WEIED —

—’ ORD ron
—p 060 o wondard PHEASE —

—} WORD woodard

These subtopics are assigned various weights, as follows: the child
binder is assigned a weight of 0.80, since this child is considered to be
the most important of the three. The subtopic hitsman is assigned a
"median" weight of 0.50, since this child is reasonably important with
respect to the other two children. The subtopic johnson is assigned a
low weight of 0.30, since this child is considered to be the least
important with respect to the other children.

When the topic boeing-people is used for a search, the Verity search
engine assumes that if the phrase "Paul Binder" is located within a
document, there is a high probability that the document will be
relevant to a search which uses the topic boeing-people. Documents
which contain the phrase "Frank Shrontz" will be reasonably relevant
to this search; documents which contain the phrase "Ron Woodard"
will be the least relevant.

Because the topic boeing-people has been assigned the ACCRUE
operator, the documents displayed at the top of the results list will be
those which contain the greatest number of children; therefore all
documents with references to all three people will be given the most
importance. Documents which contain just one name will be selected
in an order that reflects the weights of each child. Thus, because the
binder child has the highest weight, documents which include only
one individual will be ranked by those which refer to Paul Binder
first, followed by Frank Shrontz, and finally Ron Woodard.

Full-Text Search Specialty Data Store User's Guide 9-29

Weights and Document Importance Full-Text Search SDS Version 12.x

9-30

Automatic Weight Assignments

When you create a child, the Verity search engine automatically
assigns a default weight of 0.50 for children of topics which use the
ACCRUE operator. A weight of 1.00 is assigned automatically to
children of topics which use the AND or OR operators. These default
weights can be manually adjusted up or down, as described in
"Changing Weights" in this section. When you create a evidence topic
off of a topic which uses a proximity operator, default weight of 1.00
is assigned, and it cannot be changed.

Tips for Assigning Weights

When initially assigning weights, start with a weight of 0.50 for
children of ACCRUE topics, and 1.00 for children of all other topics.

When assigning weights to children of topics which use the
ACCRUE operator, you may select more relevant results if the
children do not have overly high weights. For example, assigning all
of the children of an ACCRUE topic weights of 1.00 will cause all
documents to have equal importance, regardless of how many of the
children are present within the documents. The Verity search engine
will assign equal importance to all documents containing only one
child as well as for documents which contain all children, so you will
not be able to distinguish between these documents when you view
the selection results.

Assign weights between 0.80 and 0.20 for the best selection results.

Changing Weights

Once you have assigned weights to children, you can test these
weights by running a search using the parent topics to see if the
documents you want are selected. If you find that you need to
change the weights, you can edit the existing weight assigned to that
subtopic or evidence topic. Note that when you edit topic definitions
in the topic outline file, you must rebuild the topic set using
mktopics. For complete information about using mktopics, refer to
your Verity application's administration guide.

Verity Topics

Full-Text Search SDS Version 12.x Topic Scoring and Document Importance

Topic Scoring and Document Importance

When you use a topic to perform a search, the search agent starts its
analysis by considering the evidence topics for that topic. If the
evidence topic is present, it is given 1.00 score and is considered
relevant to the search. If the evidence topic is absent, it is given a 0.00
score and is considered irrelevant to the search. If the evidence topics
are weighted, the scores of the evidence topics are multiplied by the
weights, then combines the resulting products in a manner specified
by the operator of the parent topic. If this parent topic is, in turn, the
child of another topic which is being searched, its score is multiplied
by its assigned weight, and the resulting product is combined with
the products of its siblings in a manner specified by the operator
assigned to the parent topic. This process continues until the parent
topic is reached.

The operators you use determine how parent and child scores
contribute to the importance of a selected document. As each child in
the topic is given an importance score, the following calculations are
performed:

= [fatopic uses an ACCRUE operator, the highest ranking result is
taken from the products of each child’s weight and score, then
adds a little to the score for each child which is present in the
document.

= [fatopic uses an AND operator, the products of each child's own
weight and score are compared, and the lowest product (the
minimum) is taken as the score.

< [fachild uses an OR operator, the products of each child's weight
and score are compared, and highest product (the maximum) is
taken as the score.

= Ifachild uses a proximity operator (PHRASE, SENTENCE, or
PARAGRAPH), or a relational operator, the child receives a score
of 1.00 if the topic is present, and a score of 0.00 if the topic is not
present.

= An evidence topic receives a score of 1.00 if it is present, and no
score of 0.00 if it is not present.

Once the final calculations for the parent topic have been performed,
a matched document becomes available to the Verity application so
that users can view it with its highlights.

Example:

Full-Text Search Specialty Data Store User's Guide 9-31

Topic Scoring and Document Importance Full-Text Search SDS Version 12.x

p EQEINGCO of —

9-32

— po.

— o

— o

The following example provides a breakdown of how evidence
topics and subtopics are calculated to illustrate the process by which
importance is assigned to selected documents.

In the following illustration, the parent topic BOEINGCO is being
used in a search.

P woED bosing

— ’- 0.50 beingroomprsenices PHRASE ~E } WORD Computer
P worD senices

50 hosingroomps 0F —— P 0.50 boeingrackspace SENTENCE P ioRD aemspace

} WORD electionics

} WORD boeing

L 0.50 hoeingrdefense prRAGRAPH —[' WoRD cefense

P woRD Boaing
50 boeing-label anT {
} WeRD Company

WORD pall
P 0.50 paulbinder PHRRSE —['

P worD binck

.- WORD frnk
50 boeing-pecple mocRTE P 0.50 fankshronz FHRRSE —E' WORD shrontz

WORD N
}D_SD N Woodkr! FHRRSE —E’

The evidence topics of each subtopic are first checked against the
documents to determine if they are present. Evidence topics that are
presentare assigned scores of 1.00; evidence topics that are absent are
assigned a score of 0.00.

The operators at the next level of a topic structure are used to
combine the scores of the evidence topics. Because the operators

at this level are all proximity operators (thus, no weights assigned),
they all produce scores that are either 0.00 or 1.00.

For example, assume that the following evidence topics appear
within a given document;

= Theevidence topic "Boeing Computer Services" appears within a
phrase

= Theevidence topic "Boeing Defense" appears within a paragraph
The evidence topic "Boeing Company" appears within the
document

= The evidence topic "Ron Woodard" appears within a phrase

Verity Topics

Full-Text Search SDS Version 12.x Topic Scoring and Document Importance

The other evidence topics are only partially present, or are absent.
The following table shows how the presence or absence of these
evidence topics affect topic scores. Note that the score for each topic
reflects the presence of all related evidence topics, based on the
operators which have been assigned to the parent topics.

Table 9-9: Evidence Topics and Scores

Evidence topic Evidence topic

Topic Evidence topic Present Absent Topic Score
boeing-comp- boeing 1 1
services computer n
services
1
boeing- boeing 1 0
aerospace aerospace L
electronics
1
boeing-defense boeing defense 1 1
1
boeing-label boeing 1 1
company 1
paul-binder paul binder 1 0
1
frank-shrontz frank shrontz 1 0
1
ron-woodard ron woodard 1 1
1

Given the above topic scores, the operators at the next level of topics
in the structure are calculated as follows:

= The subtopic boeing-comps, which uses the AND operator, has a
score of 0.50.

= The subtopic boeing-people, which uses the ACCRUE operator,
has a score of 0.50.

Finally, the topic BOEINGCO, which uses the OR operator, compares
the products of each child's weight and score, and takes the highest

Full-Text Search Specialty Data Store User's Guide 9-33

Designing Topics

Full-Text Search SDS Version 12.x

Designing Topics

product (the maximum) as its score. The selected document is thus
scored as 0.50.

This process is repeated for each document. The documents are
sorted by the scores of the BOEINGCO topic, and displayed in
ranked order.

This section discusses methodologies you can use to design effective
topics. You can apply the methodologies and strategies described
here whether you plan to compose topics using a topic outline file or
one of the Verity clients. The information in this section includes the
following:

< Preparing your topic design

= Topic design strategies

= Designing the initial topic

Preparing Your Topic Design

As you prepare your topic design, consider the naming conventions
you will use. Your topic names should help identify the subject
matter of the kinds documents you want to find.

To ensure the best search performance, use alphanumeric characters
(A through Z, and 0 through 9) for topic names. You can also use
foreign characters whose ASCII value is greater than or equal to 128,
as well as these symbols: $ (dollar sign), % (percentage sign),
(circumflex), + (plus sign), - (dash), and _ (underscore). Using other
non-alphanumeric characters, could cause misinterpretation of the
topic name and affect results.

Understanding Your Information Needs

9-34

You should have an understanding of the subject areas to be
addressed by your topic design and be familiar with the search
requirements of users at your site. The next step is to understand
your informational needs, as well as the document types to be
searched.

In planning your initial topic design, keep in mind that you are
developing a strategy, and the topics you define are the tactics you
will use to implement that strategy.

Verity Topics

Full-Text Search SDS Version 12.x Preparing Your Topic Design

As you develop your strategy, try to answer the following questions:
= What do you wish to gain by using a Verity search agents?

< What issues are to be solved by Verity search agents?

= Who will use search agents?

= What kind(s) of source material will be used?

< What kinds of searches will be performed?

= How are searches currently being performed?

Consider the topics you define as questions to be asked. Just as you
might ask a reference librarian at your local library for information
relating to a subject area, the topics you create should pose questions
when creating Verity search agents.

When considering your strategy, and how Verity search applications
will be implemented to provide a solution, keep in mind that a topic
you design performs several roles, as follows:

= Alibrarian

= Arresearch assistant

= Aninformation repository
= A knowledge base

Understanding Your Documents

To build effective topics, you must have a good understanding of the
types of documents being used as information sources. For example,
your documents may consist of one or more of the following types of
information:

= Letters

= Memos
= Reports
= Articles

Collect representative samples of the types of documents to be
searched. Note common characteristics you will need to apply to the
topics you design. For example, if your documents contain
important terms, acronyms, or jargon, highlight them so you can
create topics that search for this text.

As you collect your document samples, identify their sources-
whether they are internal sources, such as internal auditing reports;

Full-Text Search Specialty Data Store User's Guide 9-35

Topic Design Strategies Full-Text Search SDS Version 12.x

or external sources, such as electronic mail messages from outside
organizations. This information will enable you to define the
subtopics for top-level topics.

Using Scanned Data

If your documents are scanned into electronic files using an OCR
facility, determine whether the document files will be reviewed for
accuracy prior to indexing. If scanned files are reviewed, consult
with reviewers to ensure that standards are applied to terms,
acronyms, and jargon. If scanned files are not reviewed, note possible
variations that may occur. You can develop a topic that uses an OR
operator to include variations.

Categorizing Document Samples

Once you have collected your representative document samples and
have performed an initial analysis of their contents, you may want to
categorize them further. The categorization process can help you to
define the top-level topics and children contained in your topic
design, and help determine the operators and weights to assign.

Following are categorization examples:
= Geographic location

- Sit

= Project

« Subject area

= Date

The categorization process can help you understand the common,
meaningful elements which exist in your information sources. For
example, if you categorize your information by date (such as a
month), it makes sense to create topics that use relational operators,
such as EQUALS.

Topic Design Strategies

Once you have an understanding of your documents, you are ready
to choose a topic design strategy. There are two topic design
strategies

9-36 Verity Topics

Full-Text Search SDS Version 12.x Topic Design Strategies

= The "top-down" strategy considers the major subject
classifications first, followed by classifications of increasing
detail.

= The "bottom-up" strategy considers the detailed areas first,
followed by classifications which group each detailed area by a
more generalized subject.

Top-Down Design

A top-down strategy assumes you are designing a topic from the top-
level topics down through the individual evidence topics of each
subtopic. To design from the top down, you must adopt a taxonomy,
or scientific classification approach, to creating a topic, as follows:

= Top-level topics: use general headings to identify the subject area

= Subtopics: use more specific headings to identify the primary
groupings within the subject area, as well as topics which are
increasingly more specific.

= Evidence topics: use important terms, acronyms, or jargon, to
define the subject.

A top-down design works best when you have clearly-defined
requirements. This approach is also ideal if your set of searchable
documents is constantly growing or changing. With this strategy, for
example, you are likely to define subjects which may not yet be
evident in your information sources. Keep in mind that you can
always add new topics, if you find that a number of new documents
contain information which are not identified in your topic design.

If your information sources (that is your set of indexed documents)
changes constantly, specific subjects within documents may be
missed, especially at the lowest levels. So, you should periodically
analyze the information being selected by your topics to ensure that
topics critical to your application are current, and the appropriate
information is being found.

Bottom-Up Design

A bottom-up strategy assumes you are designing a topic from the
individual evidence topics up through the top-level topics which
will be defined. With this strategy, your topic design objective is to
select documents containing information similar to your lower-level
topics.

Full-Text Search Specialty Data Store User's Guide 9-37

Designing the Initial Topic Full-Text Search SDS Version 12.x

When you use a bottom-up design, you can start with a document
which contains a good representative sample of the words or phrases
you want to search for. Then you can group these words by
successively higher classifications.

A bottom-up design works best when you have documents which
are representative of many other documents that contain similar
information. This approach is also useful when your information
sources are not subject to many changes or additions.

Keep in mind that topic designs based on the contents of specific
documents may miss related subject areas in other documents. For
example, if a name is used in the sample document and that name
changes in other documents, the new name may be missed in
searches.

In addition, the bottom-up strategy implies that your topic design is
tuned to the specific document set being used to develop

your topics. These documents may not be representative of all
documents contained in your information sources. So, you should

periodically review the effectiveness of your searches.

Designing the Initial Topic

When you have decided whether to use the top-down approach or
the bottom-up approach for your initial topic design, it can be
helpful to create a topic outline to identify the topic levels to be
defined.

Outlining a Topic

Making a topic outline can help you determine how information will
be categorized at the various levels within a topic. You can use a topic
outline with the top-down or the bottom-up design approach, but it
is particularly useful for the top-down approach. We recommend
that every topic you build be developed as an outline first, so that
you can understand the relationships between topics and subtopics,
and organize them to be the most useful.

A topic outline helps you understand how information might be
searched for by the people who use Verity search agents at your site.
You can use a topic outline to fine-tune the information specified by
topics and subtopics to pinpoint document selection. Try to do the
following as you develop a topic outline:

9-38 Verity Topics

Full-Text Search SDS Version 12.x Designing the Initial Topic

= Identify the specific areas of information people will use when
performing searches.

= Identify any related subtopics which may be grouped as children
under a parent topic .

= Consider the initial level of detail to be covered by your topic
design.

Keep the scope of your topic outline relatively small to begin with. A
smaller, simpler topic outline is easier to define, and you can always
add additional information later. As you develop your topic outline,
determine how many levels your topic design will include.

Top-Down Topic Outline Example

Developing a top-down topic outline involves three steps.
e Establishing an information hierarchy

= Establishing individual search categories

= Establishing the topics to be built

As you work through these steps, you should meet with the people
who use Verity search agents at your site to develop a topic outline
that best meets their search needs, as described below.

Step One: Establishing an Information Hierarchy

Talk to the people at your site to learn what types of documents
contain the information they need.

For example, assume you are developing a topic design for people in
the medical industry to find information relating to current drug
testing. Based on discussions with the people who will use Verity
search agents at your site, you learn that the following types of
documents are prime sources of current drug testing information:

= Research reports
= Product literature

These documents form the information sources to be searched by
\erity search agents.

Full-Text Search Specialty Data Store User's Guide 9-39

Designing the Initial Topic Full-Text Search SDS Version 12.x

Step Two: Establishing Individual Search Categories

Review the documents that will form the information sources at your
site. Look for ways to categorize documents.

In our example, a review of the medical research reports and product
literature shows information contained in these documents is
divided into several categories. You determine that the following
categories will be used to define the top-level topics in your topic
design:

« Lab reports
« Clinical trials, data, or research
e Product literature

Step Three: Establishing the Topics to be Built

Discuss categories you define with the people who create Verity
search agents at your site to determine the most important concepts
that selected documents should contain, and to determine the top-
level topics you need to develop for each category.

For example, you determine that the category “clinical trials"
includes the following top-level topics:

product-testing

research-m ethodology

Within these top-level topics, for example, the following subtopics
are identified by subject-area experts:

9-40 Verity Topics

Full-Text Search SDS Version 12.x

Designing the Initial Topic

p product-testing — e drug-names

P research-m ethodology —————

article-type

experim ental-lab
experim ental-subjects
organ-systems
age-categary
key-aspects
proceduralaspects
study-type
drug-related-aspects
drug-adm inistration-routes
geographical-areas

Once these topics are classified, you consult the people who use
Verity search agents at your site to determine subtopics. Following is
an example of subtopics classified as children for the topic

procedural-aspects:

Full-Text Search Specialty Data Store User's Guide

9-41

Designing the Initial Topic

Full-Text Search SDS Version 12.x

9-42

p producttesting — = drug-nam es

h research-methodology ——

— P article-type

— P+ experimentaklab

—b experimentalsubjects

— p» Organ-systems

L— - age-categaory . .
p diagnosis

— P+ key-aspects B therapy

—P procedural-aspects

— P study-type

— P+ drug-related-as pects

p- prevention
P autopsy

As the topic out

— P drug-administration-routes
L b geographicalareas

line is defined, you consult the people who use Verity

search agents at your site to ensure the topics select meaningful
documents. In the next example, a topic called drug-names enables

the users at you
their names.

Verity Topics

r site to search clinical trials data for drugs, based on

Full-Text Search SDS Version 12.x Designing the Initial Topic

— P gentamin

— P gentamycin
— - vancomycin
p producttesting — e drug-names —— e trimethoprin
— P cephalos parin
— P erythom yein
— P> cilastratin

— P+ article-type

— P experimental-lab
—’. experimental-subjects
— P Organ-system s

— » ape-category

i :
P research-methodology ——— B key-aspects :t&?;‘l;;ls
:: Etrjge_c:urzl—aspects B prevention

$BIP P autopsy

— - drug-related-aspects
— P drug-administration-routes
—} feagraphical-areas

Bottom-Up Topic Outline Example

Developing a bottom-up topic outline involves three steps.

= |dentifying the subtopics which will form the lowest levels of the
topic design

= Categorizing related subtopics into higher-level topics
= Establishing the top-level topic classifications

As you work through these steps, meet with the people who create
Verity search agents at your site to develop a topic outline that best
meets your search needs, as described below.

Full-Text Search Specialty Data Store User's Guide 9-43

Designing the Initial Topic Full-Text Search SDS Version 12.x

9-44

Step One: Identifying Low-level Topics

Find a document you can use as a model whose information is
representative of other documents you want to find.

For example, assume you are developing a topic design to find
information on the computer industry. As a start, you build a topic
that searches for documents related to Apple Computer and related
products.

You use the following sample as a model document whose
information is representative of other documents you want to find.:

4 system developed specifically for networked #pple Computer, Inc.
Macintosh computers has been announced by Human Designs, Inc.

Dubhbed Chorus, the floor-ztanding unit reportedly can contain up to
16 floating-point processors and connects to networked Macintoshes to
create a multiuser desktop environment.

The product offore performance of eight million to 32 million
floating-point operationz per cecond and wae dezigned to accommodato
software development, according to the wvendor. Options include an
Ethernet I/0 upgrade and a software simulator.

A Chorus 1 single floating-point proceasscr entry-level systom costs
39,700 A Chorus 4 configuration with four floating point procescors
is available at $25,000, which includes a dedicated I/0 processor
with an Apple Appletalk port and system software. Both systems are
upgradable.

Human Designs, 322 W. Tist 5t., MHew York, N.Y. 10023. 212-550-0257.

This document makes you decide you want to locate other
documents which refer to "Appletalk" and "Macintosh," so you
define two parent topic names, apple-software and apple-hardware.

You decide you want to add additional evidence topics to select
documents containing related information, such as "Macintosh,"

"Mac Classic," "Quadra," and "Power Mac." In addition, you decide
you want to include the evidence topics "AppleTalk" "MacPaint,"
"MacWrite," and "MacDraw," as related software products. You

Verity Topics

Full-Text Search SDS Version 12.x Designing the Initial Topic

assign these evidence topics to your apple-hardware and apple-
software topics, as follows:

macintash
mac classic

p =pple-hardware — quadra

posvser mac

appletalk
macpaint

p cpple-softeare — 1 BT

YYYY YYYY

Im acdraws

Finally, you want to combine these topics into the topic apple-
products, as follows:

— P macintosh
— P mac classic

— - quadra
— P power mac

— P appletalk
— P macpaint
— p macwrite

P apple-hardware —

P apple-products

P apple-software —

— P macdraw

Step Two: Categorizing Related Subtopics

Discuss subtopics with the people who use Verity search agents at
your site to determine if other subtopics exist that can be logically
grouped in a category.

In our example, some of the people who use Verity search agents are
interested in finding information on personnel at Apple Computer,
and others are interested in finding any documents which refer to
Apple Computer. In the example below, a logical group of topics
addresses several aspects of Apple Computer:

Full-Text Search Specialty Data Store User's Guide 9-45

Designing the Initial Topic Full-Text Search SDS Version 12.x

9-46

— P macintosh
— P mac classic

— - quadra
— P power mac

— P appletalk
— = macpaint
— P tmacwrite
L— P macdraw

P apple-hardware —

P apple-products

P apple-software —

P apple-people ———— P gil-am elio

1 ACwa
P apple-misc 4[’
b- claris

apple
}apple—cnm pany-nam es {' b

b- apple computer

Step Three: Establishing Top-Level Topics

Determine whether other top-level topics are necessary to find
related information.

In the following example, a new topic, dec, is developed for another
computer company, Digital Equipment Corporation. This topic was
assigned a top-level topic and contains subtopics similar to those
defined for the apple topic, as shown below.

Verity Topics

Full-Text Search SDS Version 12.x Designing the Initial Topic

- macintosh
- mac classic
P apple-hardware ~E> quadra

P power mac

P =ppletalk
| - p macpaint
P apple-software P macwrite

P macdraw

— P apple-products

P apple ——' apple-people 7' gil-am elio

- cec

P moacwoarld

P claris
apple
L apple-company -names —E: i

apple-computer

— W apple-misc

alpha workstation
alpha server

>
P dec-hardware *E: e
' decsystem
=

— = dec-products

W E
P dec-software P decnet
- ultrix
p rob
——' dec-people 7' robert-palm er
de=po
— P dec-misc >
P Openvis
P dec

L— P dec-company -names
> digital-computer

Verity[d and TOPICL] are registered trademarks of Verity, Inc.

Full-Text Search Specialty Data Store User's Guide 9-47

Designing the Initial Topic Full-Text Search SDS Version 12.x

9-48 Verity Topics

System Procedures

This appendix describes the Sybase-supplied system procedures

used for updating and getting reports from system tables. Table A-1

lists the system procedures included with the Full-Text Search
engine.

Table A-1: System procedures

Procedure

Description

sp_check_text_index

Reports or fixes consistency problems in FTS index and source
tables.

sp_clean_text_events

Removes processed entries from the text_events table.

sp_clean_text_indexes

Removes text indexes which are note associated with a table.

sp_create_text_index

Creates an external text index.

sp_drop_text_index

Drops text indexes.

sp_help_text_index

Enhanced version only. Displays text indexes.

sp_optimize_text_index

Enhanced version only. Runs the Verity optimization routines.

sp_redo_text_events

Changes the status of entries in the text_events table and forces
re-indexing of the modified table.

sp_refresh_text_index

Adds an entry to the text_events table reflecting updates to the
corresponding source table.

sp_show_text_online

Displays information about databases or indexes that are
currently online.

sp_text_cluster

Enhanced version only. Displays or modifies clustering options.

sp_text_configure

Enhanced version only. Displays or modifies Full-Text Search
engine configuration parameters.

sp_text_dump_database

Enhanced version only. Makes a backup copy of the text indexes
in a database and optionally dumps the text_db and current
databases.

sp_text_Kkill

Enhanced version only. Terminates all connections to a specific
text index.

sp_text_load_index

Enhanced version only. Restores text indexes from a backup.

sp_text_notify

Notifies the Full-Text Search engine that the text_events table has
been modified.

sp_text_online

Makes a database available to Adaptive Server.

Full-Text Search Specialty Data Store User's Guide

Al

sp_check_text_index Full-Text Search SDS Version 12.x

sp_check_text_index

Function
Reports or fixes consistency problems in the FTS index and source
tables.
Syntax
sp_cl ean_text _events server, "index_nane",
"id_colum", "fixit"
Parameters

server — the name of the text server.
index_name — the name of the text server.
id_column - the source identity column name.

fixit — if FALSE, just reports problems. If TRUE, doesn’t report but
repairs problems.

Examples

1. sp_check_text_index "textsvr", "text.i_text",
Ili dll , Ilf al Sell

Lists problems on the server named textsvr with the column
name text.i_text.

Comments

= Before using sp_check_text_index you must issue sp_dboption “select
into”, true

= This procedure addresses three problems:

It generates an sp_refresh_text_index insert for entries in the source table
that do not have a matching entry in the index.

It generates an sp_refresh_text_index delete for entries in the index table
that have no source table entry.

It generates an sp_refresh_text_index delete for each extra entry
where duplicate index entries exist.

= Inorderto determine the index duplicates, it is necessary to select
all of the ID values from the index table into a temporary table. If
the collection has more than 64K ID values, it will be necessary to
change the “batch_blocksize configuration parameter from its

A-2 System Procedures

Full-Text Search SDS Version 12.x sp_check_text_index

default of 0 to 65536 to enable blocked reading of the returned
\erity information. If this is not done, FTS will attempt to real all
ID values in one read and fail with a Verity error of “-27.”

Messages
None

Permissions

Any user can execute sp_check_text_index.

Full-Text Search Specialty Data Store User's Guide A-3

sp_clean_text_events Full-Text Search SDS Version 12.x

sp_clean_text events

Function
Removes processed entries from the text_events table.

Syntax
sp_cl ean_text _events [up_to_date]

Parameters

up_to_date — the date and time through which all processed entries
will be deleted.

Examples
1. sp_clean_text_events "01/15/98:17: 00"
Removes data entered on or before January 15, 1998 at 5:00 p.m.

Comments

= |fthe up_to_date parameter is specified, all entries having a date
less than or equal to up_to_date and whose status is set to
processed is deleted.

= [fup_to_dateis omitted, all entries whose status is set to processed
is deleted.

< Remove entries from the text_events table only after you have
backed up the collection associated with the text index.

= With the Enhanced Full-Text Search engine, the
sp_text_dump_database system procedure automatically runs this.

Messages
None

Permissions

Any user can execute sp_clean_text_events.

See Also

sp_text_dump_database

System Procedures

Full-Text Search SDS Version 12.x sp_clean_text_indexes

sp_clean_text indexes

Function
Removes indexes from the vesaux table that are not associated with a
table.

Syntax

sp_cl ean_t ext _i ndexes

Parameters

None.

Examples

1. sp_cl ean_text_i ndexes

Comments

= This procedure reads entries from the vesaux and vesauxcol tables,
verifying that both the source table and the corresponding index
table exist. If either is missing, the index is dropped.
Messages
e Fetch resulted in an error

e Unable to drop object definition for index_nane!

Permissions

Any user can execute sp_clean_text_indexes.

Full-Text Search Specialty Data Store User's Guide A-5

sp_create_text_index Full-Text Search SDS Version 12.x

Sp_create_text_index

Function
Creates a text index.

Syntax

sp_create_text_index server_name, index_table_nane,
tabl e_name, “batch”, colum_nane
[, colum_nane ...]

Parameters
server_name — is the name of the Full-Text Search engine.

index_table_name — is the name of the index table. index_table_name
has the form [dbname.[owner.]]table, where:

dbname is the name of the database containing the index table.

owner is the name of the owner of the index table.

table is the name of the index table.

table_name — is the name of the source table containing the text being
indexed. table_name has the form [dbname.[owner.]]table.

batch — The “batch” operator (must be in quotes) tells the Full-Text
Search to reallocate every session after each batch sent to the
VDK.

column_name — is the name of the column indexed by the text index.

Examples

1. sp_create_text_index "blue", "i_blurbs", "blurbs",
" v copy”

Creates a text index and an index table named i_blurbs on the
copy column of the blurbs table.
Comments
= Up to 16 columns can be indexed in a single text index.
=« Columns of the following datatypes can be indexed:

- Standard version: char, varchar, nchar, nvarchar, text, image,
datetime, and smalldatetime

A-6 System Procedures

Full-Text Search SDS Version 12.x Sp_create_text_index

- Enhanced version: all datatypes in the Standard version, plus
int, smallint, and tinyint

The content of option_string is not case sensitive.

option_string uses a null string (" ") to specify “No Options”.

Assign the value “empty” to option_string to create a text index
that you will immediately drop. This creates the Verity collection
directory and the style files, but does not populate the collections.
For example, when you configure an individual table for
clustering, you create the text index and immediately drop it.
After you edit the style.prm file, you re-create the text index. For
more information, see “Editing Individual style.prm Files” on
page 5-3.

sp_create_text_index writes entries to the vesaux table and tells the
Full-Text Search engine to create the text index.

Execution of sp_create_text_index is synchronous. The Adaptive
Server process executing this system procedure remains blocked
until the index is created. The time required to index large
amounts of data may be take as long as several hours to complete.

When you create a text index on two or more columns, each
column in the text index is placed into its own document zone.
The name of the zone is the name of the column. The zones can be
used to limit your search to a particular column. For more
information, see “in” on page 6-12.

Do not rename an index after creating.

Messages

Can't run sp_create_text_index fromwithin a
transaction

' col um_nanme' cannot be NULL.

Col um ' col utm_nane' does not exist in table
't abl e_nane’

Index table mapping failed - Text Index creation
aborted

Invalid text index name - 'index_nane' already
exi sts

"paraneter' is not in the current database

Server nane 'server_nane' does not exist in
sysservers.

'tabl e_nane' does not exi st

Full-Text Search Specialty Data Store User's Guide A-7

sp_create_text_index

Full-Text Search SDS Version 12.x

"table_nane' is not a valid object nane

Tabl e 'tabl e_nane’' does not have an identity
colum - text index creation aborted

Text index creation failed

User 'user _name' is not a valid user in the
dat abase

Permissions

Any user can execute sp_create_text_index.

System Procedures

Full-Text Search SDS Version 12.x sp_drop_text_index

sp_drop_text_index

Function

Drops the index table and text indexes.

Syntax
sp_drop_text _i ndex "table_nane.index_table_nane"
[,"tabl e_name.index_tabl e_name"...]
Parameters

table_name - is the name of the table associated with the text indexes

you are dropping. table_name has the form [dbname.[owner.]]table,
where:

- dbname is the name of the database containing the table.
- owner is the name of the owner of the table.
- table is the name of the table.

index_table_name — is the name of the index table and text index you

are dropping. index_table_name has the form
[dbname.[owner.]]index.

Examples

1.

sp_drop_text _index "blurbs.i_blurbs"

Drops the index table and text index associated with the blurbs
table.

Comments

First, the sp_drop_text_index system procedure issues a remote
procedure call (RPC) to the Full-Text Search engine to delete the
\erity collection. Then, it removes the associated entries from the
vesaux and vesauxcol tables, drops the index table, and removes
the index table object definition.

Up to 255 indexes can be specified in a single sp_drop_text_index
request.

If database and owner are not specified, the current owner and
database are used.

Full-Text Search Specialty Data Store User's Guide A9

sp_drop_text_index Full-Text Search SDS Version 12.x

Messages

e Can't run sp_drop_text_index fromwithin a
transacti on.

= |Index 'index_name' is not a Text |ndex
e 'paraneter_name' is not a valid name

e Server nane 'server_nane' does not exist in
sysservers

e Unable to drop index table 'table_nane'. This
tabl e must be dropped nmanual |y

e User 'user_nane' is not a valid user in the
' dat abase_nane' dat abase

e vs_drop_index failed with code 'code_nane'.

Permissions

Any user can execute sp_drop_text_index.

A-10 System Procedures

Full-Text Search SDS Version 12.x sp_help_text_index

sp_help_text_index

(Enhanced version only)

Function

Displays a list of text indexes for the current database.

Syntax

sp_hel p_text _i ndex [index_tabl e_nane]

Parameters

index_table_name — is the name of the text index you want to display.

Examples
1. sp_hel p_text_index
Displays all indexes.
2. sp_hel p_text_index "i_blurbs”
Displays information about the text index i_blurbs.

Comments

< sp_help_text_index is available only with Enhanced Full-Text Search
Specialty Data Store.

= |fthe index_table_name parameter is specified, information about
that text index is displayed. This information includes the name
of the text index, the name of the Verity collection for the index,
the name of the source table, the name of the IDENTITY column,
and the name of the Full-Text Search engine that created the
index.

< [Ifindex_table_name is omitted, a list of all text indexes in the
current database is displayed
Messages
 No text indexes found in database 'database_nang'

e Text index 'index_name' does not exist in database
' dat abase_nan®'

e (nject nust be in the current database

Permissions

Any user can execute sp_help_text_index.

Full-Text Search Specialty Data Store User's Guide A-11

Sp_optimize_text_index Full-Text Search SDS Version 12.x

Sp_optimize_text index
(Enhanced version only)

Function

Performs optimization on a text index.

Syntax
sp_optim ze_t ext _i ndex index_t abl e_nane
Parameters
index_table_name —is the name of the text index you want to optimize.
index_table_name has the form [dbname.[owner.]]table, where:

- dbname is the name of the database containing the index table.
If present, the owner or a placeholder is required.

- owner is the name of the owner of the index table.
- table is the name of the index table.

Examples
1. sp_optimze_text_index "i_blurbs"
Optimizes the text index i_blurbs to improve query performance.

Comments

= sp_optimize_text_index is available only with Enhanced Full-Text
Search Specialty Data Store.

= This system procedure causes the Full-Text Search engine to run
the specified text index through the Verity optimization routines.

= sp_optimize_text_index is useful for optimizing a text index that has
been updated with Verity optimization disabled (trace flag 11
turned on).

= To enable MaxClean optimization turn on traceflag 30. This
traceflag should only be used during maintenance since it could
take extra time and interfere with normal usage. MaxClean is a
\erity optimization feature that removes out-of-date collection
files.

Messages

e 'index_table_nane' is not in the current database

A-12 System Procedures

Full-Text Search SDS Version 12.x sp_optimize_text_index

e 'index_table nane' does not exist
e |ndex 'index_table nane' is not a Text |ndex
e This procedure is not supported agai nst renote
server 'server_nane'
Permissions

Any user can execute sp_optimize_text_index.

See Also
“Updating Existing Indexes” on page 8-1

Full-Text Search Specialty Data Store User's Guide A-13

sp_redo_text_events Full-Text Search SDS Version 12.x

Sp_redo_text events

Function

Changes the status of entries in the text_events table and forces the re-
indexing of the modified columns.

Syntax
sp_redo_text_events [fromdate [,to_date]]

Parameters

from_date — is the starting date and time in a date range of entries to
be modified.

to_date — is the ending date and time in the specified date range of the
entries to be modified.

Examples

1. sp_redo_text_events "01/05/98:17: 00",
"02/12/98: 08: 30"

Re-indexes columns that were modified between January 5, 1998
at 5:00 p.m. and February 12, 1998 at 8:30 a.m.

Comments

= Resets the status to “unprocessed” for all entries in the text_events
table that currently have a status of “processed.” The Full-Text
Search engine is notified that a re-index operation is required.

= Useful for synchronizing a text index after a recovery of the Verity
collection from a backup. When you use the Enhanced Full-Text
Search engine, this procedure is run automatically during
sp_text_load_index.

= Ifto_date is omitted, all entries between from_date and the current
date with a status of “processed” are reset to “unprocessed.”

= |f both from_date and to_date are omitted, all entries in the
text_events table with a status of “processed” are reset to “un-
processed.”

Messages
e to_date cannot be specified without fromdate

= You have not specified the full range.

System Procedures

Full-Text Search SDS Version 12.x sp_redo_text_events

Permissions

Any user can execute sp_redo_text_events.

Full-Text Search Specialty Data Store User's Guide A-15

sp_refresh_text_index Full-Text Search SDS Version 12.x

sp_refresh_text_index

Function
Records modifications in the text_events table when you change the
text index’s source table data.
Syntax
sp_refresh_text_i ndex table_nane, colum_nane, row d,
nod_t ype
Parameters
table_name —is the name of the source table being updated. table_name
has the form [dbname.[owner.]]table, where:
- dbname is the name of the database containing the table.
- owner is the name of the owner of the table.
- table is the name of the table.

column_name — is the name of the column being updated.
rowid — is the IDENTITY column value of the changed row.

mod_type — specifies the type of the change. Must be insert, update, or
delete.

Examples

1. sp_refresh_text_index "blurbs", "copy", 2.000000,
"updat e"

Records in the text_events table that you have updated the copy
column of the blurbs table. The row you have updated has an id
of 2.000000.

Comments

<« The user maintains the consistency of the text index. You must
run sp_refresh_text_index anytime you update source data that has
been indexed so that the text_events table reflects the change. This
keeps the collections in sync with your source data. The
collections are not updated until you run sp_text_notify.

= You can create triggers that issue sp_refresh_text_index for non-text
and non-image columns. For more information on creating

A-16 System Procedures

Full-Text Search SDS Version 12.x sp_refresh_text_index

triggers, see “Propagating Changes to the Text Index” on page
4-10.

Messages

Col um ' col utm_nane' does not exist in table
't abl e_nan®e'

Invalid nod_type specified ('nod_type'). Correct
val ues: | NSERT, UPDATE, DELETE

Owner 'owner _nanme' does not exi st
Tabl e 'tabl e nane' does not exi st
"table_nane' is not a valid nane.
Text event table not found

Permissions

Any user can execute sp_refresh_text_index.

See Also

sp_text_notify

Full-Text Search Specialty Data Store User's Guide A-17

sp_show_text_online Full-Text Search SDS Version 12.x

A-18

sp_show_text_online

Function
Displays information about databases or text indexes that are
currently online.
Syntax
sp_show_text _online server_name [, {| NDEXES |
DATABASES}]

Parameters

server_name — is the name of the Full-Text Search engine to which the
request is sent.

INDEXES | DATABASES - specifies whether the request should contain
data about online indexes or online databases. The default is
INDEXES.

Examples

1. exec sp_show_ text _online KRAZYKAT

Displays all indexes that are currently online in the KRAZYKAT
Full-Text Search engine.

2. exec sp_show_ text_online KRAZYKAT, DATABASES
Displays all databases that are currently online in the
KRAZYKAT Full-Text Search engine.

Comments

= sp_show_text_online issues a remote procedure call (RPC) to the Full-
Text Search engine to retrieve information about the indexes or
the databases that are currently online.

= |f the results of this procedure do not list a database, use
sp_text_online to bring the desired database online.
Messages
e sp_show text_online failed for server server_nane.
e The paraneter value 'value' is invalid

e The RPC sent to the server returned a failure
return code

« The second paraneter nust be | NDEXES or DATABASES

System Procedures

Full-Text Search SDS Version 12.x sp_show_text_online

Permissions

Any user can execute sp_show_text_indexes.

See Also

sp_text_online

Full-Text Search Specialty Data Store User's Guide A-19

sp_text_cluster Full-Text Search SDS Version 12.x

sp_text cluster

(Enhanced version only)

Function

Displays or changes clustering parameters for the active thread.

Syntax

sp_text_cluster server_nane, cluster_paranmeter [,
cl uster_val ue]

Parameters
server_name — is the name of the Full-Text Search engine.

cluster_parameter — is the name of the clustering parameter.
Values are shown in Table A-2.

cluster_value — is the value you assign to the clustering parameter for
the active thread. Values are shown in Table A-2.

Table A-2: Clustering configuration parameters

Values for

Values for cluster_value
cluster_parameter -

cluster_style Specifies the type of clustering to use. Valid values are:

= fixed — generates a fixed number of clusters. The number is set by
the cluster_max parameter.

= coarse — automatically determines the number of clusters to
generate, based on fewer, coarse grained clusters.

= medium — automatically determines the number of clusters to
generate, based on medium sized clusters.

« fine — automatically determines the number of clusters to
generate, based on smaller, finer grained clusters.

cluster_max Specifies the maximum number of clusters to generate when
cluster_style is set to fixed. A value of 0 means that the search engine
determines the number of clusters to generate.

A-20 System Procedures

Full-Text Search SDS Version 12.x sp_text_cluster

Table A-2: Clustering configuration parameters (continued)

Values for

cluster_parameter

Values for cluster_value

cluster_effort

Specifies the amount of effort (time) that the search engine should
expend on finding a good clustering. Valid values are:

= effort_default — the search engine spends the default amount of
time. You can also use the Verity term “default” if you enclose it
in double quotes (““).

= high - the search engine spends the longest time.
= medium — the search engine spends less time.

« low - the search engine spends the least amount of time.

cluster_order

Specifies the order in which to return the rows within the clusters.
Valid values are:

= "0" - indicates rows are returned in order of similarity to the
cluster center. This means the first row returned for a cluster is
the one that is most prototypical of the rows in the cluster.

« "1"—indicates that rows are returned in the same relative order in
which they were submitted for clustering. For example, if cluster
1 contains the first, third and seventh rows found for the query,
they will be returned in that relative order within the cluster.

Examples

1.

sp_text_cluster KRAZYKAT, cluster_order, "1"
Changes the cluster_order parameter to 1 for the active thread.

2. sp_text_cluster KRAZYKAT, cluster_style
Displays the current value of the cluster_style parameter.
Comments

The Verity clustering algorithm attempts to group similar rows
together, based on the values of the clustering parameters.

If the cluster_parameter parameter is specified, but the
cluster_value parameter is omitted, sp_text_cluster displays the
value of the clustering parameter that is specified.

sp_text_cluster does not modify the value of the clustering
configuration parameter. The cluster_value is valid only for the
thread that is currently executing. To modify the default values,
use the sp_text_configure system procedure.

Full-Text Search Specialty Data Store User's Guide A-21

sp_text_cluster Full-Text Search SDS Version 12.x

= For information on how to request a clustered result set, see
“Using Pseudo Columns to Request Clustered Result Sets” on
page 6-6.
Messages

e This procedure is not supported agai nst renote
server 'server_nang'

e The paraneter value ‘value’ is invalid
e sp_text_cluster failed (status = status)

Permissions

Any user can execute sp_text_cluster.

See Also

sp_text_configure

A-22 System Procedures

Full-Text Search SDS Version 12.x sp_text_configure

sp_text _configure

(Enhanced version only)

Function

Displays or changes Full-Text Search engine configuration
parameters.

Syntax

sp_text_configure server_nanme [, config_nane [,

config_val ue]]

Parameters

server_name — is the name of the Full-Text Search engine.

config_name — is the name of the configuration parameter to be

displayed or modified.

config_value — is the value you assign to the configuration parameter.

Examples

1.

sp_text_configure KRAZYCAT, backdir, "/datal/backup"
Changes the backup destination directory to /data/backup.

2. sp_text_configure KRAZYCAT, backdir
Displays the backup destination directory.
Comments

When you execute sp_text_configure to modify a dynamic
parameter:

- The configuration and run values are updated

- The configuration file is updated

- The change takes effect immediately

When you execute sp_text_configure to modify a static parameter:
- The configuration value is updated

- The configuration file is updated

- The change takes effect only when you restart the Full-Text
Search engine

Full-Text Search Specialty Data Store User's Guide A-23

sp_text_configure

Full-Text Search SDS Version 12.x

= When issued with no parameters, sp_text_configure displays a

report of all Full-Text Search engine configuration parameters
and their current values.

If the config_name parameter is specified, but the config_value
parameter is omitted, sp_text_configure displays the report for the
configuration parameter specified.

For information on the individual configuration parameters, see
“Modifying the Configuration Parameters” on page 7-5.

Messages

Configuration val ue cannot be specified without a
configuration option

This procedure is not supported against renote
server 'server_nane'

sp_text_configure failed - possible invalid
configuration option ('config_nange')

Permissions

Any user can execute sp_text_configure.

A-24 System Procedures

Full-Text Search SDS Version 12.x sp_text_dump_database

sp_text dump_database

(Enhanced version only)

Function

Makes a backup copy of a text index.

Syntax

sp_t ext _dunp_dat abase backupdbs [, current_to] [,
current_with] [, current_stripeOl [, ... [,
current _stripe31]]] [, textdb_to] [, textdb_wi th]
[, textdb_stripeOl1 [, ... [, textdb_stripe31]]]

Parameters

backupdbs — specifies whether the current database and the text_db
database are backed up before the text index is backed up. Valid
values are shown in Table A-3.

Table A-3: Values for backupdbs

Value Description

CURRENT_DB_AND_INDEXES Indicates that the current database is backed up
before the text indexes are backed up.

CURRENT_DB_AND_CURRENT _ Indicates that the current database is backed up

INDEXES before the text indexes are backed up, and only the
indexes associated with the current database are
dumped.

TEXT_DB_AND_INDEXES Indicates that the text_db database is backed up before
the text indexes are backed up.

INDEXES_AND_DATABASES Indicates that the current and text_db databases are

backed up before the text indexes are backed up.

ONLY_INDEXES Indicates that only the text indexes are backed up.

current_to —is the to clause of the dump database command for dumping
the current database. Use this only if you specify
CURRENT_DB_AND_INDEXES or INDEXES_AND_DATABASES for the
backupdbs parameter.

current_with — is the with clause of the dump database command for
dumping the current database. Use this only if you specify
CURRENT_DB_AND_INDEXES or INDEXES_AND_DATABASES for the
backupdbs parameter.

Full-Text Search Specialty Data Store User's Guide A-25

sp_text_dump_database

Full-Text Search SDS Version 12.x

current_stripe — is the stripe clause of the dump database command for
dumping the current database. Use this only if you specify
CURRENT_DB_AND_INDEXES or INDEXES_AND_DATABASES for the
backupdbs parameter.

textdb_to — is the to clause of the dump database command for dumping
the text_db database. Use this only if you specify
INDEXES_AND_DATABASES for the backupdbs parameter. Use this only
if you specify TEXT_DB_AND_INDEXES or INDEXES_AND_DATABASES for
the backupdbs parameter.

textdb_with — is the with clause of the dump database command for
dumping the text_db database. Use this only if you specify
TEXT_DB_AND_INDEXES or INDEXES_AND_DATABASES for the backupdbs
parameter.

textdb_stripe — is the stripe clause of the dump database command for
dumping the text_db database. Use this only if you specify
TEXT_DB_AND_INDEXES or INDEXES_AND_DATABASES for the backupdbs
parameter.

Examples

A-26

1. sp_text_dunp_dat abase ONLY_I| NDEXES
Only text indexes are backed up.

2. sp_text_dunp_dat abase CURRENT_DB_AND | NDEXES, "to
'/ dat a/ dblbackup' "

The current database is dumped to /data/dblbackup before the
text indexes are backed up.

3. sp_text_dunp_dat abase @ackkupdbs
"TEXT_DB_AND_| NDEXES", @extdb_to
'/ dat a/ t ext dbbackup' "

The text_db database is dumped to /data/textdbbackup before the
text indexes are backed up.

to

4. sp_text_dunp_dat abase @ackupdbs =
"1 NDEXES_AND DATABASES', @urrent_to = "to
'/ dat a/ dblbackup' ",
@extdb_to = "to '/dataltextdbbackup'"

The current database is dumped to /data/dblbackup and the
text_db database is dumped to /data/textdbbackup before the text
indexes are backed up.

System Procedures

Full-Text Search SDS Version 12.x sp_text_dump_database

Comments

The Full-Text Search engine concatenates the values of current_to,
current_with, and current_stripe01 to current_stripe31 to dump
database currentdbname and then executes the dump database
command. The output from the execution of the dump database
command is sent to the Full-Text Search error log.

The Full-Text Search engine concatenates the values of textdb_to,
textdb_with, and textdb_stripe01 to textdb_stripe31 to the string
“dump database currentdbname” and then executes the dump database
command. The output from the execution of the dump database
command is sent to the Full-Text Search error log.

All entries in the text_events table that have a “processed” status
in the current database are deleted when all indexes have been
backed up.

The backup files for the Verity collections are stored in the
directory specified in the backDir configuration parameter.

See references to the configuration paramter backCmd for
customizing backups.

Messages

The paraneter value ‘value’ is invalid
Server nane ‘server’ does not exist in sysservers

Attenpt to dunp dat abase ‘ dat abase_nane’ failed -
use the 'dunp database' conmand

Attenpt to backup text indexes on server
'server_name' failed

Attenpt to clean text_events in database
‘ dat abase_nane’ failed (date = 'date')

Paramet er 'paraneter_nane' is required when
dunpi ng dat abase ‘ dat abase_nang’

Dunpi ng dat abase 'dat abase_nanme' - check Full Text
Search SDS error log for status

Permissions

Any user can execute sp_text_dump_database.

See Also

dump_database in the Adaptive Server Reference Manual

Full-Text Search Specialty Data Store User's Guide A-27

sp_text_kill Full-Text Search SDS Version 12.x

sp_text kill
(Enhanced version only)

Function
Terminates all connections to a specific text index.

Syntax

sp_text_kill index_table_nane

Parameters

index_table_name — is the name of the text index from which all
connections will be terminated. index_table_name has the form
[dbname.[owner.]]table, where:

- dbname is the name of the database containing the index table.
If present, the owner or a placeholder is required.

- owner is the name of the owner of the index table.
- table is the name of the index table.

Examples
1. sp_text_kill "i_blurbs"
Terminates all existing connections to the text index i_blurbs.

Comments

= sp_text kill is available only with Enhanced Full-Text Search
Specialty Data Store.

= This system procedure causes the Full-Text Search engine to
terminate all connections to the specified index, except for the
connection that initiated the request.

= Attempts to drop a text index that is currently in use will fail.
sp_text_kill can be used to terminate all existing connections so that
the index can be successfully dropped.

Messages
e |ndex 'index_table_name' is not a text index

e This procedure is not supported agai nst renote
server 'server_nane'

e 'index_table_name' does not exist

A-28 System Procedures

Full-Text Search SDS Version 12.x sp_text_kill

e Only the System Admi nistrator (SA) may execute
this procedure

Permissions

Only user “sa” can execute sp_text_kill.

See Also

sp_drop_text_index

Full-Text Search Specialty Data Store User's Guide A-29

sp_text_load_index

Full-Text Search SDS Version 12.x

A-30

sp_text load_index

(Enhanced version only)

Function

Restores a text index backup.

Syntax

sp_text_| oad_i ndex

Parameters

None.

Examples
1. sp_text_| oad_i ndex

Restores all text indexes in the current database.

Comments

= Runsp_text_load_index after the text_db database and the current
database have been fully recovered.

« sp_text_load_index restores the Verity collections from the most
recent backup. The Full-Text Search engine then runs
sp_redo_text_events and sp_text_notify to reapply all entries in the
text_events table since the date and time the index was backed up.

= See references to the configuration paramter restoreCmd for
customizing backups.

Messages

e Server nane ‘server_nane’ does not exist in
sysservers

e Unable to restore text indexes for server
‘server_nane’

e This procedure is not supported agai nst renote
server 'server_nang'

e Update to text_events table in database
dat abase _nane failed for server ‘server_nane’ -
text _events not rolled forward

System Procedures

Full-Text Search SDS Version 12.x sp_text_load_index

Permissions

Any user can execute sp_text_load_index.

See Also

sp_redo_text_events; sp_text_notify

Full-Text Search Specialty Data Store User's Guide A-31

sp_text_notify

Full-Text Search SDS Version 12.x

A-32

Sp_text notify

Function
Notifies the Full-Text Search engine that the text_events table has
been modified.

Syntax

sp_text_notify [{true | false}] [, server_nane]

Parameters
true — causes the procedure to run synchronously.
false — causes the procedure to run asynchronously.
server_name — is the name of the Full-Text Search engine you are
notifying.
Examples

1. sp_text_notify true

Comments

« You must run sp_text_notify after you issue sp_refresh_text_index to
inform the Full-Text Search engine that the source tables have
been modified.

= If you do not specify true or false, sp_text_notify runs synchronously.
= If no server name is specified, all Full-Text Search engines are
notified.

Messages

e Can't run sp_text_notify fromwithin a transaction

e Notification failed, server = 'server_nane'

e Server nane
sysservers

server_name' does not exist in

e The paraneter value 'value' is invalid

Permissions

Any user can execute sp_text_notify.

See Also

sp_refresh_text_index

System Procedures

Full-Text Search SDS Version 12.x sp_text_online

sp_text _online

Function
Makes a database available for full-text searches to Adaptive Server.

Syntax
sp_text_online [server_nane], [database_nane]

Parameters
server_name — is the name of the Full-Text Search engine.

database_name — is the name of the database that you are bringing
online.

Examples
1. sp_text_online @atabase_nane = pubs2

Makes the pubs2 database available for full-text searches using
the Full-Text Search engine.

Comments

= |fadatabase is not specified, all databases are brought online for
full-text searches.

= [faserver name is not specified, all Full-Text Search engines listed
in the vesaux table are notified.

= With the Enhanced Full-Text Search engine, databases are
brought online automatically if the auto_online configuration
parameter is set to 1.

Messages
e Al Databases using text indexes are now online

= Databases containing text indexes on server
' dat abase_nanes' are now online

e Server nane 'server_nanme' is now online”

e Server nane 'server_nane' does not exist in
sysservers.

e The paraneter value 'value' is invalid
e The specified database does not exi st

e vs online failed for server 'server_nange'

Full-Text Search Specialty Data Store User's Guide A-33

sp_text_online Full-Text Search SDS Version 12.x

Permissions

Any user can execute sp_text_online.

A-34 System Procedures

Sample Files

This appendix contains the following:
= The text of the default configuration file (textsvr.cfg)
= Anoverview of the sample_text_main.sql sample script

= Alist of all the sample files provided by the Full-Text Search
engine

= Anoverview of the getsend program

Default textsvr.cfg Configuration File

; @#) File: textsvr.cfg 1.17 07/26/99

; Full Text Search Specialty Data Store
; Sanpl e Configuration File

; The installation procedure places this file in the
; “SYBASE" directory.

; Lines with a sem-colon in colum 1 are coment |ines.

; Modification History:

;o 11-21-97 Create file for Standard Full Text Search SDS
; 03-02-98 Add trace flags and config val ues for

; Enhanced Full Text Search SDS

;. 05-26-99 renove references to sds/text

;. 07-09-99 added batch bl ock size

; 08-24-99renpve version string and correct copyright

; copyright (c) 1997, 1999
; Sybase, Inc. Emeryville, CA
; Al rights reserved.

; DI RECTI ONS
; Modifying the textsvr.cfg file:

; An installation can run the Text Search SDS product
; as supplied, with no nodifications to configuration

Full-Text Search Specialty Data Store User's Guide

Default textsvr.cfg Configuration File

Full-Text Search SDS Version 12.x

B-2

paraneters. Default values fromthe executable program
are in effect.

The “textsvr.cfg” file is supplied with all configuration
paraneters commented out.

The hierarchy for setting configuration values is:

default value internal to the executable program (I owest)
configuration file value (overrides default val ue)
comand | i ne argunent (overrides default value and *.cfg file)

Command |ine argunents are available to override

set

tings for these options:

-i<file specification for interfaces file>

-l <file specification for log file>

-t (no arg) directs text server to wite start-up
information to stderr (default is DO NOT wite start-up

nf ormati on)

To

(1)

(2)

set configuration file paraneters, follow these steps:

I f changi ng the server name to other than “textsvr”:

(1A) Copy “textsvr.cfg” to “your_server_nane.cfg”
Exanpl e: text_server.cfg

(1B) Modify the [textsvr] line to [your_server_nane]
Exanpl e: [text_server]

The maxi num | ength of “your_server_name” is 30 characters.

Set any configuration values in the CONFI G VALUES SECTI ON bel ow.
Renmove the semi-colon fromcolum 1.

DEFI NI TI ONS OF TRACE FLAG AND SORT ORDER VALUES

“tracefl ags” paraneter, for text server
Avail abl e “tracefl ags” values: 1,2,3,4,5,6,7,8,9,10,11,12,13

e

PO OWO~NOOUIAWNEPR

trace connect/di sconnect/attention events
trace | anguage events

trace rpc events

trace cursor events

| og error messages returned to the client
trace information about indexes

trace senddone packets

wite text server/Verity api interface records to the |og
trace sql parser

trace Verity processing

di sable Verity collection optim zation

Sample Files

Full-Text Search SDS Version 12.x Default textsvr.cfg Configuration File

le returning of sp_statistics information
backup operations (Enhanced Full Text Search only)

ef | ags” paraneter, for Open Server conponent of text server
“srv_traceflags” values: 1,2,3,4,5,6,7,8

TDS headers

TDS dat a

attention events

nessage queues
TDS t okens

open server events
deferred event queue
network requests

er” paraneter
“sort_order” values: 0,1,2,3
by score, descending (default)
by score, ascending
by tinestanp, descending
by tinestanp, ascending

CONFI G VALUES SECTI ON
svr.cfg” file is supplied with the val ues commented out.

de value(s) in the executabl e program
required val ue(s) bel ow

; - Renpve the semicolon fromcolum 1

;12 disab
; 13 trace
; “srv_trac
; Avail able
;1 trace
;2 trace
;3 trace
;4 trace
;5 trace
;. 6 trace
;7 trace
;8 trace
; “sort_ord
; Avail able
;0 order
;1 order
;2 order
;3 order
; The “text
; To overri
; - Set
[textsvr]

;mn_sessio
; max_sessi o
;batch_si ze
;sort_order
; def aul t Db
;errorlLog

; | anguage

; charset =
; vdkLanguag
; vdkChar set
;tracefl ags
;srv_tracef
; max_i ndexe
; max_packet
; max_st acks
;max_t hread
;col IDir
;col IDir
; vdkHormre
; vdkHormre
;interfaces

10
100
00

ns
ns

oo

= text_db
textsvr. |l og
english
iso_1
e =
= 850
=0
lags = 0
s = 126
size = 2048
ize = 34816
s = 50
<txtsvr directory tree |ocation on UNI X>/collections
<txtsvr directory tree |ocation on Wn-NT>\collections
<txtsvr directory tree |location on UNI X>/verity
<txtsvr location on Wn-NT>\verity
= <$SYBASE | ocation on UN X>/interfaces

Full-Text Search Specialty Data Store User's Guide B-3

The sample_text_main.sgl Script Full-Text Search SDS Version 12.x

;interfaces =

; The paranete
Search SDS.
; If defined t

;auto_online =

;backDir = <tx
;backDir = <tx
; backCmd =

;restoreCmd =

; know edge_bas
;nocase = 0
;cluster_max =
;cluster_order
;cluster_style
;cluster_effor
; bat ch_bl ocksi

<USYBASE% | ocati on on Wn-NT>\ini\sql.ini

rs inthis section apply only to the Enhanced Full Text
0 a Standard Full Text Search engine they will be ignored.

0
tsvr directory tree |ocation on UNI X>/ backup
tsvr directory tree |ocation on W n-NT>\ backup

e =

0

Fi xed

t = Default
ze = 0

In i o

The sample_text_main.sql Script

B-4

The installation of the Full-Text Search engine copies the
sample_text_main.sgl script to the
$SYBASE/$SYBASE_FTS/sample/scripts directory. This script
illustrates the following operations:

Setting up a text index.

Modifying data and propagating changes to the collections. This
includes inserts, updates, and deletes.

Dropping a text index.

Execution of this script is not required for installation or

co

nfiguration; Sybase supplies the script as a sample.

Before you run the sample_text_main.sqgl script:

Your Adaptive Server and Full-Text Search engine must be
configured and running.

Use a text editor to edit the sample_text_main.sqgl script. Change
“YOUR_TEXT_SERVER” to the name of your Full-Text Search
engine in Step 4 in the sample_text_main.sgl script.

Verify that your model database contains a text_events table. If
your model database is not configured this way, you need to:

- Modify the sample_text_main.sgl script to exit after creating the
database

Sample Files

Full-Text Search SDS Version 12.x Sample Files lllustrating Full-Text Search Engine Features

- Apply the installevent script to the new database (see “Running
the installevent Script” on page 4-4)

- Execute the remainder of the sample script

Direct the script as input to your Adaptive Server. For example, to
run the sample_text_main.sgl script on an Adaptive Server named
MYSVR:

isgl -Uogin -Ppassword - SMYSVR

-1 $SYBASE/ $SYBASE_FTS/ sanpl e/ scri pt s/ sanpl e_t ext _mai n. sql -omai n. out
When you finish with this sample environment, log in to your
Adaptive Server and drop the sample database. For example:

1> use master

2> go

1> drop dat abase sanpl e_col ors_db
2> go

The sample_text_main.sgl script can be rerun.

Sample Files lllustrating Full-Text Search Engine Features

The Full-Text Search engine supplies a set of sample files for
illustrating text server operations. The files are located in the
$SYBASE/$SYBASE_FTS/sample/scripts directory. Execution of the
sample files is not required for installation, configuration, or
operation of a Full-Text Search engine.

Custom Thesaurus

The following files illustrate how to set up and use a custom
thesaurus:

<« sample_text_thesaurus.ctl —is a sample control file.

= sample_text_thesaurus.sql — provides sample queries using the
custom thesaurus created by the sample control file.

You can create a custom thesaurus only with the Enhanced Full-Text
Search engine. The scripts can be rerun.

Topics

The following files illustrate how to set up and use topics:
« sample_text_topics.otl — is a sample outline file.

Full-Text Search Specialty Data Store User's Guide B-5

getsend Sample Program Full-Text Search SDS Version 12.x

= sample_text_topics.kbm — is a sample knowledge base map.

= sample_text_topics.sql — provides sample queries using the defined
topics.

Topics is available only with the Enhanced Full-Text Search engine.
The scripts can be rerun.

Clustering, Summarization, and Query-by-Example

The following files illustrate how to set up and use clustering,
summarization and query-by example:

= sample_text_setup.sql — creates a sample environment.

= sample_text_queries.sgl — issues queries against the environment
and drops the environment.

You can use these scripts only with the Enhanced Full-Text Search
engine. These scripts can be rerun as a pair.

getsend Sample Program

B-6

The Enhanced Full-Text Search engine supplies a program named
getsend to load text or image data from a file into a column defined in
Adaptive Server.

The required source and header files, a makefile, and directions for
building and running the program are included in the directory:

$SYBASE/$SYBASE_FTS/sample/source

Refer to the README.TXT file and getsend.c file for information on
how to use the program.

Sample Files

O Note

Unicode Support

The Unicode standard, a subset of the International Standards
Organization's ISO 10646 standard, is an international character set.
Unicode is identical to the Basic Multilingual Plane (BMP) of ISO
10646, which supports all the major scripts and languages in the
world. Therefore, it is a superset of all existing character sets.

The major advantages of Unicode are:

= Provides single-source development. This means you develop an
application once and it can then be localized for multiple locales
and in multiple languages. By using a single unified character set,
you do not have to modify your applications to take into account
differences between character sets, thus reducing development,
testing, and support costs.

= Allows you to mix different languages in the same database. An
all-Unicode system does not require that you design your
database to keep track of the character set of your data.

The Enhanced Full-Text Search engine supports Unicode. To use this
feature, you need to obtain and install the Unicode Developer’s Kit
(also known as UDK). This contains everything you need to set up a
Unicode-enabled client/server database system.

To configure the Full-Text Search engine to store data in Unicode
format, set the charset configuration value to utf8 (see “Modifying the
Configuration Parameters” on page 7-5).

If you issue wildcard searches against data in Unicode format, turn on trace
flag 15. For more information, refer to “Setting Trace Flags” on page 7-12,

Full-Text Search Specialty Data Store User's Guide C-1

Full-Text Search SDS Version 12.x

Unicode Support

Index

Symbols

, (comma)
in SQL statements xxi
{} (curly braces)
in SQL statements xxi
... (ellipsis) in SQL statements xxii
() (parentheses)
in SQL statements xxi
[1 (square brackets)
in SQL statements xxi
<>(angle brackets), enclosing Verity
operators in 6-9

A

accrue operator 6-8, 6-11
Adaptive 3-9
Adaptive Server
connecting to a Full-Text Search
engine 1-1
processing a full-text query 2-6
and operator 6-8, 6-11
with the not modifier 6-20
Angle brackets, enclosing Verity
operatorsin 6-9
Attention events, tracing 7-13
Open Server 7-14
auto_online configuration parameter 4-9,

7-7,7-9, A-33

B

backDir configuration parameter 7-7,7-9,
7-19, A-27

Backup and recovery

for the Enhanced version 7-18

for the Standard version 7-15
Backup files

default location of 7-7, 7-9
Backup operations, tracing 7-13

batch_blocksize configuration
parameter 7-5
batch_size configuration parameter 7-5,
7-8
and performance 8-4
Brackets. See Square brackets [] and
Angle brackets <>

C

case operator modifier 6-19
Case sensitivity
in queries 6-10
setting for the Full-Text Search
engine 7-15
in SQL xxii
Character sets
defining in srvbuild 3-8
setting the default 7-11
charset configuration parameter 7-5, 7-9
defining in srvbuild 3-8
setting the default 7-11
cis cursor rows configuration
parameter 8-3
cis packet size configuration
parameter 8-3
cluster_effort configuration
parameter 6-7,7-7,7-9
values for A-21
cluster_keywords pseudo column 6-2, 6-7
cluster_max configuration parameter 6-7,
7-6, 7-9
values for A-20
cluster_number pseudo column 6-2, 6-7
cluster_order configuration
parameter 6-7,7-7,7-9
values for A-21
cluster_style configuration parameter 6-7,
7-6,7-9
values for A-20
Clustering 6-6

Full-Text Search Specialty Data Store User's Guide Index-1

Full-Text Search SDS Version 12.x

configuring for all tables 5-2
configuring for individual tables 5-3
enabling 5-1
modifying values of parameters
for A-20
setting up 6-7
in a sort specification 6-5
writing queries for 6-7
collDir configuration parameter 7-6, 7-9
defining in srvbuild 3-8
Collections 2-1
See also text indexes
backing up in the Enhanced
version 7-18, 7-19, A-25
backing up in the Standard
version 7-16
backup and recovery in the Enhanced
version 7-18
backup and recovery in the Standard
version 7-15
creating A-6
default character set 7-11
default language 7-10
disabling optimization 7-13, 8-1
displaying the names of A-11
dropping A-9
location of 2-1, 3-8
setting the location of 7-6
modifying data in 4-10
optimizing A-12
performance issues when
updating 8-5
populating with data 4-7
and reindexing A-14
restoring from backup in Enhanced
version 7-18
restoring from backup in Standard
version 7-17, 7-20
Columns
valid datatypes to index 2-1
Comma (,)
in SQL statements xxi
Commands in Verity. See Operators
(commands)

Index-2

complement operator 6-8, 6-12
Component Integration Services
connecting to a Full-Text Search
engine 1-1
Configuration file
creating in UNIX 3-9
editing parameter values 7-7
sample B-1
and the srvbuild utility 3-8

Configuration parameters 7-5to 7-7,7-8

to 7-10

See also individual configuration
parameters

auto_online A-33

backDir 7-19, A-27

batch_size parameter and
performance 8-4

charset 3-8, 7-11

cluster_effort 6-7, A-21

cluster_max 6-7, A-20

cluster_order 6-7, A-21

cluster_style 6-7, A-20

collDir 3-8

default Db 3-8

displaying values in the Enhanced
version A-23

errorLog 3-8

language 3-8, 7-10

max_sessions 3-8

max_sessions parameter and
performance 8-4to 8-5

min_sessions 3-8

min_sessions parameter and
performance 8-4to 8-5

modifying values in the Enhanced
version 7-8, A-23

modifying values in the Standard
version 7-7

nocase 7-15

sort_order 6-4, 7-11

srv_traceflags 7-14

vdkCharset 7-11

vdkLanguage 7-10

Full-Text Search SDS Version 12.x

Configuration parameters, Adaptive
Server
cis cursor rows 8-3
cis packet size 8-3
Connecting to a Full-Text Search
engine 8-6
Connections, number of user 8-4
Conventions
See also Syntax
directory paths xx
used in manuals xx
Curly braces ({})
in SQL statements xxi
Cursor events, logging 7-13
Custom thesaurus 5-8
and creating the control file 5-9
and examining the default
thesaurus 5-9
and the mksyd utility 5-10
and replacing the default
thesaurus 5-11

D

Databases
bringing online for full-text
searches 4-9
Databases, bringing online
automatically 7-7, 7-9
Datatypes
and indexing 4-7
of indexed columns 2-1, A-6
default_Db configuration parameter 7-6,
7-9
defining in srvbuild 3-8
Defining multiple Full-Text Search
engines 4-3
delete operations
creating triggers for 4-10
Deletes
and updating the text indexes 2-4
from the text_events table A-4
from the vesaux table A-5
Document filters 2-2

Document zones
and multiple columns in a text
index 4-9
using with the in operator 6-12
dump database command
and the sp_text_dump_database system
procedure 7-19, A-27
using in the Standard version 7-16

E

Ellipsis (...) in SQL statements xxii
Environment variables for UNIX
LD_LIBRARY_PATH 3-9
SYBASE 3-9
errorLog configuration parameter 7-6, 7-9
defining in srvbuild 3-8
Error log file
defining in srvbuild 3-8
setting the path name of 7-6
specifying in the runserver file 7-2
Error logging 7-13
Events, logging 7-12 to 7-14

F

Filters, document 2-2
creating 5-6
and document zones 6-13
forceplan
and forcing join orders 8-2
Full-Text Search engine
changing the name of 4-2
configuring multiple engines 4-3, 8-5
to 8-6
connecting to 8-6
document filters 2-2
how queries are processed 2-5to 2-6
notifying of updates to the text_events
table A-32
operators 6-8 to 6-19
relationship of components 2-5
shutting down 7-4
starting as a service 7-3

Full-Text Search Specialty Data Store User's Guide Index-3

Full-Text Search SDS Version 12.x

starting for UNIX platforms 7-1

starting for Windows NT 7-3 to 7-4

starting with Sybase Central 7-3
Full-text search queries

bringing databases online for 4-9

and case sensitivity 6-10

components of 6-1

processing a 2-6

and requesting clustered result

sets 6-7

sort order specifications 6-4 to 6-6

and using topics 5-15

using alternative syntax 6-11
Full-Text Search Specialty Data Store

components of 2-1to 2-5

G
getsend program B-6

IDENTITY columns
adding a unique index 4-7
adding to existing source table 4-7
displaying with the text index A-11
example of adding 4-12
joining with the index table 2-3, 2-6
in the source table 2-1
id pseudo column 2-3, 6-2
mapping to the IDENTITY column in
the source table 4-7
and query optimization 8-2
index_any pseudo column 6-3
and query optimization 8-2
Index table
contents of 2-3
creating 4-7, A-6
dropping A-9
and the id column 4-6
inaquery 2-5
joining with the source table 2-3
and pseudo columns 2-4, 6-2
in operator 6-8, 6-12

Index-4

insert operations
creating triggers for 4-10
Inserts
and updating the text indexes 2-4
installevent installation script
editing 4-5
example of using 4-12
using 4-4
installtextserver installation script
and creating multiple Full-Text Search
engines 8-5
editing 4-2, 4-3
location of 4-2
instsvr.exe utility 7-4
Integrity, maintaining 2-2
Intelligent Classifier 5-14
Interfaces
tracing calls between Full-Text Search
engine and Verity 7-13
interfaces configuration parameter 7-6,
7-9
Interfaces file
setting the location of 7-6, 7-9
specifying in the runserver file 7-2

J

Joining the source table with the text
index 2-1, 2-3, 2-5, 4-6, 6-1
and increasing performance of 8-2
Join order
ensuring correct 8-2

K

/keys modifier 5-10
knowledge_base configuration
parameter 5-15, 7-7, 7-10
Knowledge base map
creating 5-14
defining the location of 5-15

Full-Text Search SDS Version 12.x

L

Language
defining in srvbuild 3-8
setting the default 7-10
language configuration parameter 7-5,
7-9
defining in srvbuild 3-8
setting the default 7-10
Language events, logging 7-13
LD_LIBRARY_PATH environment
variable 3-9
like operator 6-8, 6-13
enabling literal text in the QBE
specification 5-1
list: keyword 5-10
Logging events using trace flags 7-12 to
7-14

M

Maintaining integrity 2-2
many operator modifier 6-19
max_docs pseudo column 6-3
with clustered result sets 6-8
and increasing query
performance 8-2
and sort orders 7-12
max_indexes configuration parameter 7-5,
7-8
max_packetsize configuration
parameter 7-5, 7-9
max_sessions configuration
parameter 7-5, 7-9
defining in srvbuild 3-8
and performance 8-4to 8-5
max_stacksize configuration
parameter 7-5, 7-8
max_threads configuration parameter 7-5,
7-8
Metadata 2-2
min_sessions configuration
parameter 7-5, 7-9
defining in srvbuild 3-8
and performance 8-4to 8-5

mksyd utility
and creating a custom thesaurus 5-10
and examining the default
thesaurus 5-9
mktopics utility 5-14
Multiple Users 8-7

N

Naming the Full-Text Search engine 7-6,
7-9
in UNIX 3-9
near/n operator 6-8, 6-14
with the order modifier 6-20
near operator 6-8, 6-13, 6-14
Network requests, tracing 7-14
nocase configuration parameter 7-7,
7-10, 7-15
not operator modifier 6-20

0

Online databases. See Databases,
bringing online
Open Server events, tracing 7-14
Open Server trace flags 7-14
Operator modifiers
case 6-19
many 6-19
not 6-20
order 6-20
Operators (commands) 6-8 to 6-19
accrue 6-8, 6-11
and 6-8, 6-11
complement 6-8, 6-12
enclosing in angle brackets 6-9
in 6-8, 6-12
like 6-8, 6-13
near 6-8, 6-13, 6-14
near/n 6-8, 6-14
or 6-9, 6-11
paragraph 6-9, 6-14
phrase 6-9, 6-14
product 6-9, 6-15

Full-Text Search Specialty Data Store User's Guide Index-5

Full-Text Search SDS Version 12.x

and relevance-ranking 6-3to 6-4

sentence 6-9, 6-15

stem 6-9, 6-15

sum 6-9, 6-16

thesaurus 6-9, 6-16

topic 6-9, 6-17

wildcard 6-9, 6-17

word 6-9, 6-19

yesno 6-9, 6-19
Optimization, disabling 7-13, 8-1
order operator modifier 6-20
or operator 6-9, 6-11

with the not modifier 6-20
Outline file for topics 5-13

P

paragraph operator 6-9, 6-14
with the many modifier 6-19
with the order modifier 6-20
Parameters
of asearch 2-4
Parentheses ()
in SQL statements xxi
Performance and tuning
adding a unique index 4-7
and using multiple Full-Text Search
engines 8-5
disabling text index optimization 8-1
increasing query performance 8-2to
8-3
reconfiguring Adaptive Server 8-3 to
8-4
reconfiguring the Full-Text Search
engine 8-4t08-5
and sp_text_notify 8-5
phrase operator 6-9, 6-14
with the many modifier 6-19
Procedures. See System procedures
Processed events
removing from the text_events
table A-4
Processing full-text searches 2-5
product operator 6-9, 6-15

Index-6

Propagating changes to the
collections 2-4
Proxy tables as a source table 2-1
Pseudo columns 2-4
cluster_keywords 6-2, 6-7
cluster_number 6-2, 6-7
id 6-2
inaquery 2-5
index_any 6-3
max_docs 6-3, 6-8
score 6-3to 6-4
sort_by 6-3, 6-4 to 6-6, 6-7
summary 6-3, 6-6

Q

QBE specification. See
Query-by-example
Queries
and pseudo columns 2-4
Queries, full-text search
bringing databases online for 4-9
and case sensitivity 6-10
components of 6-1
ensuring the correct join order 8-2
increasing performance of 8-2 to 8-3
processing of 2-5, 2-6
requesting clustered result sets 6-7
sort order specifications 6-4 to 6-6
and using topics 5-15
using alternative syntax 6-11
Query-by-example
configuring for all tables 5-2
configuring for individual tables 5-3
enabling 5-1
and the like operator 6-13

R

Ranking documents. See
Relevance-ranking
Recovery
and synchronizing a text index with
the source table A-14

Full-Text Search SDS Version 12.x

for the Enhanced version 7-18

for the Standard version 7-15
Relevance-ranking 6-3 to 6-4

See also score pseudo column
Remote procedure calls

sp_traceoff 7-14, 8-2

sp_traceon 7-14, 8-2
Remote tables as a source table 2-1
Replicating text indexes 4-10
RPC events, logging 7-13
RPCs. See Remote procedure calls
Runserver file 7-1

creating in srvbuild 3-9

flags for 7-1

S

Sample files
configuration file B-1
illustrating clustering B-6
illustrating custom thesaurus 5-9, B-5
illustrating query-by-example B-6
illustrating summarization B-6
illustrating topics feature 5-12, B-5
Sample program getsend B-6
Sample scripts
sample_text_main.sql 4-6, 4-10, B-4
score pseudo column 2-4, 6-3 to 6-4
with clustered result sets 6-8
and default sort order 7-11
and the many modifier 6-19
sorting by 6-5
score values
how Sybase reports 6-4
Scripts, sample
sample_text_main.sql 4-6, 4-10, B-4
Search parameters 2-4
sentence operator 6-9, 6-15
with the many modifier 6-19
with the order modifier 6-20
Sessions, number of user 8-4
showplan
and examining join orders 8-2

Shutting down the Full-Text Search
engine 7-4
sort_by pseudo column 6-3
and requesting a clustered result
set 6-7
and specifying a sort order 6-4 to 6-6
and setting up a defined column as a
sort specification 5-4
sort_order configuration parameter 6-4,
7-6,7-9, 7-11
Sort orders
and clustered result sets 6-5, 6-7
by column 5-4, 6-5
inaquery 6-4to 6-6
max_docs and sort order 7-12
by score 6-5
setting the default 7-11
by timestamp 6-5, 7-12
Sort specifications
setting up a defined column to sort
by 5-4
Source tables
adding an IDENTITY column to 4-6
changes to data A-16, A-32
contents of 2-1
and displaying text indexes A-11
inaquery 2-5
sp_addserver system procedure 8-6
sp_check_text_index system procedure A-2
sp_clean_text_events system
procedure A-4
sp_clean_text_indexes system
procedure A-5
sp_create_text_index system procedure 4-7,
A-6to A-8
creating indexes that use a filter 5-6
example of using 4-13
specifying multiple columns 4-9
sp_drop_text_index system procedure A-9
to A-10
sp_help_text_index system procedure A-11
Sp_optimize_text_index system
procedure 8-1, A-12 to A-13

Full-Text Search Specialty Data Store User's Guide Index-7

Full-Text Search SDS Version 12.x

sp_redo_text_events system
procedure A-14to A-15
and restoring text indexes in Standard
version 7-17
sp_refresh_text_index system
procedure A-16to A-17
modifying data in the collections 4-10
running automatically 4-10
sp_show_text_online system
procedure A-18 to A-19
sp_statistics system procedure
disabling 7-13, 8-1
sp_text_cluster system procedure A-20 to
A-22
sp_text_configure system procedure 7-8,
A-23to A-24
sp_text_dump_database system
procedure 7-19, A-25to A-27
sp_text_kill system procedure A-28 to
A-29
sp_text_load_index system procedure 7-20,
A-30to A-31
sp_text_notify system procedure A-32
and modifying data in the
collections 4-10
and performance issues 8-5
and restoring text indexes in Standard
version 7-17
and turning off optimization 8-1
sp_text_online system procedure 4-9, A-33
to A-34
example 4-13
sp_traceoff remote procedure call 7-14,
8-2
sp_traceon remote procedure call 7-14,
8-2
SQL parsing, tracing 7-13
Square brackets []
in SQL statements xxi
srv_traceflags configuration
parameter 7-6, 7-9, 7-14
srvbuild utility
and modifying values of
configuration parameters 3-8

Index-8

Starting the Full-Text Search engine
from Sybase Central 7-3
on UNIX platforms 7-1
on Windows NT 7-3to 7-4
as aservice 7-3
startserver utility 7-1
Start-up
and setting the number of user
connections 8-4
Start-up commands
and the runserver file 7-1
on Windows NT 7-3
stem operator 6-9, 6-15
with the many modifier 6-19
style.dft file 5-6
style.prm file
editing an existing collection’s A-7
editing for an existing collection 5-3
editing the master 5-2
and enabling Verity functionality 5-1
location of an existing collection 5-3
location of master 5-2
style.ufl file 5-4, 5-6
style.vgw file 5-4, 5-6
Summarization
configuring for all tables 5-2
configuring for individual tables 5-3
enabling 5-1
writing queries requesting 6-6
summary pseudo column 6-3
enabling before using 5-1
using 6-6
sum operator 6-9, 6-16
Sybase Central, starting from 7-3
SYBASE environment variable 3-9
Symbols in SQL statements xxi
Synonym list for a custom thesaurus 5-9
synonyms: statement 5-10
Syntax, alternative Verity 6-11
Syntax conventions, Transact-SQL xx
sysservers table
adding Full-Text Search engines 8-6
System procedures
See also individual system procedures

Full-Text Search SDS Version 12.x

list of A-1
sp_check_text_index A-2
sp_clean_text_events A-4
sp_clean_text_indexes A-5
sp_create_text_index A-6 to A-8
sp_drop_text_index A-9 to A-10
sp_help_text_index A-11
sp_optimize_text_index A-12 to A-13
sp_redo_text_events A-14 to A-15
sp_refresh_text_index A-16 to A-17
sp_show_text_online A-18 to A-19
sp_text_cluster A-20 to A-22
sp_text_configure A-23 to A-24
sp_text_dump_database A-25to A-27
sp_text_kill A-28 to A-29
sp_text_load_index A-30to A-31
sp_text_notify A-32
sp_text_online A-33 to A-34
System tables
updating A-1

T

TDS data, tracing 7-14
TDS headers, tracing 7-14
TDS tokens, tracing 7-14
text_db database 2-2
backing up in the Enhanced
version 7-18, 7-19, A-25
backing up in the Standard
version 7-15, 7-16
changing the name of 4-2, 4-5
defining in srvbuild 3-8
restoring from backup in Enhanced
version 7-18, 7-20
restoring from backup in Standard
version 7-17
and the vesauxcol table 2-3
and the vesaux table 2-3
text_events table 2-4
backing up in the Enhanced
version 7-18
backing up in the Standard
version 7-16

Full-Text Search Specialty Data Store User's Guide

changing the status of entries A-14

columnsin 2-4

creating 4-4

example of creating 4-11

recording inserts, updates, and
deletes A-16

removing entries from A-4

restoring from backup in Enhanced
version 7-18, 7-20

restoring from backup in Standard
version 7-17

and sp_text_dump_database 7-19, A-27

and sp_text_load_index 7-20

Text documents, types of 2-2
Text indexes

backing up in the Enhanced
version 7-18, 7-19, A-25

backing up in the Standard
version 7-15, 7-16

bringing online A-33

creating 4-7, A-6

creating and batch sizes 8-4

displaying a list of A-11

displaying online A-18

dropping A-9

example of creating 4-11 to 4-13

and the index table 2-3

metadata 2-2

that include multiple columns 4-9

optimizing A-12

performance issues when
updating 8-5

placing on multiple Full-Text Search
engines 8-5

and reindexing A-14

replicating 4-10

restoring from backup in Enhanced
version 7-18

restoring from backup in Standard
version 7-17, 7-20

setting location of backup files 7-7,
7-9

and tracing information 7-13

update using text_events table 2-4

Index-9

Full-Text Search SDS Version 12.x

updating 8-1
using a document filter with 5-6
textsvr.cfg file
sample B-1
Thesaurus, custom 5-8
and creating the control file 5-9
and examining the default
thesaurus 5-9
and the mksyd utility 5-10
and replacing the default
thesaurus 5-11
thesaurus operator 6-9, 6-16
using a custom thesaurus 5-8
Timestamp
sorting by 7-12
topic operator 5-15, 6-9, 6-17
Topics
creating a knowledge base map 5-14
creating an outline file 5-13
creating a topic set directory 5-14
creating complex relationships 5-13
description of 5-12
executing queries using 5-15
sample files 5-12
troubleshooting 5-16
Topic set directories 5-14
mapping to 5-14
Trace flags 7-12
enabling trace flags 11 and 12 8-1
Open Server 7-14
setting to examine join orders 8-2
traceflags configuration parameter 7-6,
7-9
Triggers for running
sp_refresh_text_index 4-10

U

Unicode
and wildcard searches 7-13
Unicode Support C-1
Unique index
adding to an IDENTITY column 4-7
example of creating 4-12

Index-10

update operations
creating triggers for 4-10
Updates
and updating the text indexes 2-4
update statistics
disabling 8-1
Updating indexes 8-1
User
connections 8-4
sessions 8-4
User databases
backing up in the Enhanced
version A-25
backing up in the Standard
version 7-16, 7-19
bringing online automatically 7-7, 7-9
bringing online for full-text
searches 4-9, A-33
displaying a list of text indexes
for A-11
displaying online A-18
restoring from backup in Enhanced
version 7-18, 7-20
restoring from backup in Standard
version 7-17
User table. See Source table

\Y

vdkCharset configuration parameter 7-5,
7-9
setting the default 7-11
vdkHome configuration parameter 7-6,
7-9
vdkLanguage configuration
parameter 7-5, 7-9
setting the default 7-10
Verity
setting the Verity directory 7-6
tracing Verity processing 7-13
Verity collections. See Collections
Verity query. See Full-text search queries
vesauxcol table
columnsin 2-3

Full-Text Search SDS Version 12.x

removing entries when dropping text
indexes A-9

updating 4-7

vesaux table

columnsin 2-3

creating entries A-7

removing entries from A-5

removing entries when dropping text
indexes A-9

updating 4-7

W

wildcard operator 6-9, 6-17
using with data in Unicode
format 7-13
with the case modifier 6-19
with the many modifier 6-19
Windows NT
directory paths xx
word operator 6-9, 6-19
with the case modifier 6-19
with the many modifier 6-19
writetext command, using triggers
with 4-10

Y
yesno operator 6-9, 6-19

yA

Zones. See Document zones

Full-Text Search Specialty Data Store User's Guide

Index-11

Full-Text Search SDS Version 12.x

Index-12

